Appendix 1: Technical Report #### 1.0 Introduction The APA commissioned an evidence-based guideline on acute pain in children in 2005. The chairman was appointed, and a committee assembled representing a number of professional groups involved in children's pain management in the UK, see section 1 for names of committee members and the professional and patient groups they represent. The Association was not involved in the editorial process of the guideline itself except as represented by relevant committee members. An initial meeting was held iat which existing published guidelines on paediatric acute pain were reviewed and the need for a guideline was discussed. Published guidelines were appraised using the AGREE instrument (available at: http://www.agreecollaboration.org/1/agreeguide/sign/index.html), table 1. Although there are a number of guidelines concerned with paediatric pain, none of them covered all aspects that are included in the present guideline either in sufficient detail, or using comparable methodology. The committee therefore decided that the present guideline would add to the available information on the subject. A basic structure of the guideline was agreed: incorporating the views of committee members and the bodies they represent. It was decided that the guideline should include advice on pain assessment, the management of painful medical and surgical procedures and a synopsis of analgesia and management strategies. The list of procedures included in the guideline were chosen by the committee, using their expert knowledge, on the basis of their perceived clinical frequency and importance. Following initial searches the list of procedures was revised according to the availability of research evidence. ## 2.0 Searches Systematic methods were used to search for studies relevant to the three evidence-based sections of the guideline: Section 3.0 Pain Assessment Section 4.0 Medical Procedures Section 5.0 Postoperative Pain Members of the committee took responsibility for searches and appraisal of different parts of the guideline according to their area of expertise. Committee members worked in pairs in order to compile and check searches, they also consulted with the other committee members and the chairman as and when necessary. The published literature for the 10 year period 1996- 2006 was searched for studies, including meta-analyses and systematic reviews, evaluating the *effectiveness* or *validity* of pain management strategies or assessment methods including individual assessment tools for acute postoperative and procedural pain in children. Bibliography reviews of review articles and published guidelines were also conducted in order to confirm that searches had identified all relevant publications. ### Search strategies Searches were limited to human studies, in English, in children 0-18 years old between the dates 1st January 1996- 31st December 2006. Databases consulted were Pubmed/Medline, Ovid, Cinahl, Embase, Psychlit, Ingenta, Web of Science, British Nursing Index and Cochrane Library. General searches were performed using key word identifiers and key phrases: e.g. adolescent, child, children, pediatric, paediatric, neonate, preterm, infant, baby, analgesia, analgesic, acute pain, procedural pain, postoperative pain. These general searches were then further refined by searching key words and phrases specific to each section of the guideline i.e. pain assessment tools, procedural pain or postoperative pain, examples of key words are given in table 2, a full list of all key words is available on request from the editor. Manual searches of the bibliographies of review articles and other published guidelines were also performed in order to identify studies not obtained by electronic searches. ## 3.0 Study Selection and Data Extraction Abstracts of studies that were identified in the searches were appraised for inclusion or exclusion by a member of the committee responsible for each section. If it was not possible to ascertain if a study met inclusion criteria from the abstract, the full article was obtained. In cases of uncertainty, the relevant study was discussed with the editor, or by the committee as a group in order to reach a decision. Inclusion and exclusion criteria for studies in each section of the guideline are given in table 3. ## 4.0 Study Evaluation, direct and indirect evidence Included studies were evaluated for methodological quality using criteria shown below, and assigned the appropriate evidence level: Level 1 1++ High quality Meta analyses, systematic reviews of RCTs, or RCTs with a very low risk of bias 1+ Well conducted Meta analyses, systematic reviews of RCTs, or RCTs with a low risk of bias 1 - Meta analyses, systematic reviews of RCTs, or RCTs with a high risk of bias #### Level 2 2++ High quality systematic reviews of case-control or cohort studies. High quality case-control or cohort studies with a very low risk of confounding, bias, or chance and a high probability that the relationship is causal 2+ Well-conducted case control or cohort studies with a low risk of confounding, bias, or chance and a moderate probability that the relationship is causal 2 - Case control or cohort studies with a high risk of confounding, bias, or chance and a significant risk that the relationship is not causal #### Level 3 Non-analytic studies, e.g. case reports, case series #### Level 4 **Expert opinion** The quality of studies was assessed with the assistance of 'methodology checklists' for specific study types published by the Scottish Intercollegiate Guideline Network (SIGN) and available at: http://www.sign.ac.uk/methodology/index.html Assessment of bias was assisted by the use of the 'Oxford Bias Guide' and advice on evaluation of bias in clinical trials published in Bandolier Extra 2001 available at: http://www.jr2.ox.ac.uk:80/Bandolier/Extraforbando/Bias.pdf Studies were summarised in data extraction tables, grouped according to subject and procedure, these are shown in appendix 4. A brief discussion of the available evidence for each procedure is included in each subsection under the heading 'evidence', a table is included that summarises the level of evidence available for the effectiveness of each analgesic strategy as listed ### Direct evidence Studies in children directly applicable to the age and procedure(s) as stated. #### Indirect evidence Evidence from studies considered by the committee to be sufficiently similar to the procedure in question to allow tentative extrapolation. ## 5.0 Grading and Formulation of Recommendations Evidence was translated into recommendations for clinical implementation; they are presented at the start of each sub-section and summarised in Section 2.0. Recommendations were graded according to the level of evidence used to compile them, as shown below, and the relevant studies are directly cited with each recommendation. Indirect evidence was not included when recommendations were formulated or graded. Recommendations are listed in order of the strength of evidence currently available NOT according to their clinical importance or other criterion. #### Grade A At least one Meta analysis, systematic review, or RCT rated as 1++, and directly applicable to the target population; or A systematic review of RCTs or a body of evidence consisting principally of studies rated as 1+, directly applicable to the target population, and demonstrating overall consistency of results #### Grade B Evidence including studies rated as 2++ or better, directly applicable to the target population, and demonstrating overall consistency of results; or Extrapolated evidence from studies rated as 1+ or 1++ #### Grade C Evidence including studies rated as 2+ or better, directly applicable to the target population and demonstrating overall consistency of results; or Extrapolated evidence from studies rated as 2++ ### Grade D Evidence level 3 or 4; or Extrapolated evidence from studies rated as 2+ #### **6.0 Good Practice Points** Indicate best clinical practice, based on the clinical experience and opinion of the guideline development group; they are provided in situations where published evidence was insufficient to make a formal recommendation, but the committee wished to emphasise important aspects of good practice. ## 7.0 Peer Review and Consultation A draft of the guideline was made available for peer review and professional consultation between September and November 2007. Copies were sent to professional organisations represented by members of the committee and were made available on websites of the Association of Paediatric Anaesthetists and Royal College of Anaesthetists. Written feedback was obtained from the British Pain Society, the Royal College of Paediatrics and Child Health and the Royal College of Nursing. Written comments were also received from 12 individuals. The guideline was officially endorsed by the Council of the British Pain Society at their meeting on 6th September 2007. ## **8.0 Conflict of Interest** No conflict of interest was declared by members of the committee. **Table 1: Existing Guidelines** | Year | Title | Source | AGREE compliant | |------|--|---|-----------------| | 1999 | The recognition and assessment of acute pain in children | RCN (UK) | Yes | | 2001 | The recognition and assessment of acute pain in children | RCPCH (UK) | Yes | | 2001 | Policy Statement: Assessment and Management of Acute Pain in Infants Children and Adolescents | AAP (American
Academy of Pediatrics)
APS (American Pain
Society) | No | | 2004 | Guideline for the
Management of Pain in
Children | British Association
of
Emergency Medicine | No | | 2005 | Guideline Statement: the management of procedure-related pain in neonates | RACP (Australia) Paediatrics and Child Health Division | No | | 2005 | Guideline Statement:
management of procedure
related pain in children and
adolescents | RACP (Australia) Paediatrics and Child Health Division | No | | 2005 | Acute Pain Management: Scientific Evidence* | ANZCA (Australia) | Yes | ^{*}adults and children **Table 2: Examples of Key Words and phrases** | Tubic 2: Examples of itey Words and pinases | | | | | | | | | |---|--------------------------|---------------------------|--|--|--|--|--|--| | Pain Assessment | Medical Procedures | Surgical Procedures | | | | | | | | assessment | procedure | operation | | | | | | | | evaluation | procedural pain | post-operative | | | | | | | | intensity | medical procedure | postoperative | | | | | | | | measure | | | | | | | | | | metric | Name of procedure, | Name of procedure, | | | | | | | | rating | associated procedure or | associated procedure or | | | | | | | | reliability | abbreviation e.g. | abbreviation e.g. | | | | | | | | scale | cannulation, | Adenoid, | | | | | | | | score | venepuncture, heelprick, | adenoidectomy, tonsil, | | | | | | | | tool | heel prick, heel-lance, | tonsillar, tonsillectomy, | | | | | | | | validity or validation | lance, needle, | adeno-tonsillectomy, | | | | | | | | | needlestick, vein, | adenotonsillectomy etc. | | | | | | | | Name of specific tool or | venous etc. | | | | | | | | | abbreviation e.g. 'FLACC' etc | | | | | | | | | | FLACE BIG | | | | | | | | | **Table 3: Inclusion and Exclusion criteria** | Study inclusion criteria | Study exclusion criteria | |---------------------------|--------------------------| | English | Not in English | | Studies in children | Studies in adults | | Population clearly | Population unclear, | | defined | mixed adults and | | | children without | | | subgroup reporting | | Validating specified pain | tools measuring stress, | | assessment tool/s | anxiety, sedation or | | | other non-pain modality | | Randomised control | Efficacy data | | trials, meta-analyses or | incompletely or | | systematic reviews of | insufficiently reported | | RCTs, Cohort studies or | | | Case series reporting | | | efficacy data | | | Procedure clearly | Procedure unclear or | | defined | mixed/ unspecified | | | procedures without | | | subgroup reporting | | | Chronic pain | Fig. 1 Search Strategy Example: Pubmed ## 1. PubMed http://www.ncbi.nlm.nih.gov/entrez/query.fcgi - 2. Limits - i) "English" - ii) "Humans" - iii) "All Child: 0 -18 years" - 3. General Searches obtained using criteria: - i) child or children or paediatric or pediatric - ii) acute pain or postoperative pain or analgesia - iii) specific procedure or keyword eg. "tonsillectomy or tonsil" - 4. Searches i) iii) combined using search "History" function. - 5. Citations assessed for inclusion. - 6. Expand function ("find related articles") used for key articles to broaden search. - 7. Abstracts obtained and reviewed. - 8. Full text articles obtained except where otherwise specified in data extraction tables ## 2.0 Appraisal of studies Efficacy studies or other studies reporting efficacy data were appraised and graded for quality using the grading system recommended by the Scottish Intercolleageate Guideline Network (SIGN), shown below: ## **GRADE 1** 1++ High quality meta analyses, systematic reviews of RCTs, or RCTs with a very low risk of bias 1+ Well conducted meta analyses, systematic reviews of RCTs, or RCTs with a low risk of bias 1 - Meta analyses, systematic reviews of RCTs, or RCTs with a high risk of bias ## **GRADE 2** 2++ High quality systematic reviews of case-control or cohort studies. High quality case-control or cohort studies with a very low risk of confounding, bias, or chance and a high probability that the relationship is causal 2+ Well conducted case control or cohort studies with a low risk of confounding, bias, or chance and a moderate probability that the relationship is causal 2 - Case control or cohort studies with a high risk of confounding, bias, or chance and a significant risk that the relationship is not causal ## **GRADE 3** Non-analytic studies, e.g. case reports, case series ## **GRADE 4** **Expert opinion** This process was assisted by the use of study quality checklists: available from SIGN at www.sign.ac.uk/methodology/index.html. And using the 'Oxford Bias Guide' for the evaluation of clinical trials available at: http://www.jr2.ox.ac.uk/bandolier/Extraforbando/Bias.pdf. ## 3.0 Formulation of recommendations Recommendations were formulated and graded according to the following criteria: ## **Grade A** At least one meta analysis, systematic review, or RCT rated as 1++, and directly applicable to the target population; or A systematic review of RCTs or a body of evidence consisting principally of studies rated as 1+, directly applicable to the target population, and demonstrating overall consistency of results ## Grade B A body of evidence including studies rated as 2++, directly applicable to the target population, and demonstrating overall consistency of results; or Extrapolated evidence from studies rated as 1++ or 1+ ## **Grade C** A body of evidence including studies rated as 2+, directly applicable to the target population and demonstrating overall consistency of results; or Extrapolated evidence from studies rated as 2++ ## **Grade D** Evidence level 3 or 4; or Extrapolated evidence from studies rated as 2+ This process was assisted by reference to published guidance from the National Institute for Clinical Excellence (NICE) on creating guideline recommendations available at: http://www.nice.org.uk/page.aspx?o=423027 ## 4.0 Good practice points Good practice points are recommendations for best practice based on the clinical experience of the guideline development group, but not necessarily supported by research evidence. ## 5.0 Data Extraction Tables - 1. Pain Assessment (see attached file) - 2. Medical Procedures (see attached file) - 3. Postoperative Pain (see attached file) Committee on Psychosocial Aspects of Child and Family Health, American Academy of Pediatrics; Task Force on Pain in Infants, Children, and Adolescents, American Pain Society. The assessment and management of acute pain in infants, children, and adolescents. **Pediatrics** 2001;108(3):793-7. # **Appendix 2** # Implementation, Cost-effectiveness and Audit It is the responsibility of heathcare organisations, such as hospital trusts, and of individual practitioners to ensure that decisions about health care are based on the best available, current, valid and relevant evidence. Pain management in children is frequently identified as an area of practice in need of improvement. In the UK, the National Service Framework for Children has set standards in a number of areas of clinical practice, including pain management, which advocate the local implementation of evidence-based protocols and guidelines in order to achieve the highest standards of care(2003). This document aims to assist this process by presenting background information and systematically derived evidence statements pertaining to the accurate assessment and effective management of acute pain during diagnostic and therapeutic procedures and following surgery in children. The Association of Paediatric Anaesthetists will be responsible for the publication and dissemination of the document. The process of raising awareness will be assisted by the participation of the other professional organisations who have contributed to its development, including promotion of the document to their members. # Implementation The document is designed such that individual practitioners can assess their own knowledge and performance against the stated advice and recommendations in relevant areas of their own practice. At an organisational level, mechanisms should be put in place to ensure that current protocols and levels of care being provided are reviewed against the recommendations in the guideline or, where no protocol exists, one is developed in line with local preferences and circumstances. An algorithm for guideline implementation is given in Fig.1. The majority of hospital facilities used by children in the UK are covered by 'Pain Control teams', such teams can provide support such as help with the identification of a suitable implementation lead, assessments of current practice and teaching and training where needed. Further advice on implementation strategies are available from NICE (National Institute of Clinical Excellence), SIGN (Scottish Intercollegiate Guideline Network) and EPOC (Cochrane Effective Practice and Organisation of Care). ## Cost-effectiveness There is little or no data available on the cost effectiveness of acute pain management in children. Untreated pain adds considerably to the unpleasantness and trauma of illness, injury and clinical procedures: It is also likely to delay recovery and lead to long term adverse consequences(NSF 2003). The majority of analgesics, and specialised equipment such as PCA infusion pumps, mentioned in this guideline are already readily available in most hospitals. Nevertheless, additional resources may be required for e.g. staff training on the use of pain assessment tools or implementation of new analgesic strategies. ## **Audit** Implementation of the guideline should be reviewed and monitored regularly; including compliance with recommendations, the effectiveness of analgesic strategies and incidences of adverse effects. This is best achieved through regular audit using review of hospital records or by direct data collection from patients, their families or healthcare workers. Examples of audit outcomes include: | Pain assessment | | |
---|---|-------------------------------| | Recommendation: | Audit criterion | Outcomes | | No individual measure can be broadly recommended for pain assessment across all children or all contexts: Grade B | % patients having developmentally appropriate postoperative pain assessment | target 100% | | Children's pain should be assessed, documented, and appropriate action taken: Grade D | % patients having documented pain assessments at predefined intervals following surgery | target 100% | | | % patients receiving appropriate analgesia within pre-specified time interval following documented moderate/severe pain assessment. | target 100% within 15 minutes | | Procedural Pain | | | |---|---|--| | Recommendation: | Audit criterion | Notes | | Venepuncture is preferred
to heel lance (in
neonates) as it is less
painful: Grade A | % infants having heel lance | Heel lance may be necessary for some situations but it may also be possible to reduce incidence by appropriate modification of practice or protocols and reaudit | | Behavioural techniques of pain management should be used to reduce Lumbar Puncture pain: Grade A Topical LA and LA infiltration are effective in reducing LP pain: Grade B | % patients having either LA and behavioural management technique or both. | Target 100% | | Postoperative Pain | | | |---|--|---| | Recommendation: A combination of individually titrated intraoperative opioids and regularly administered | Audit criterion % patients with moderate/severe pain in postoperative recovery room | Notes Target <20% | | perioperative mild
analgesics is required
(tonsillectomy pain);
Grade A | % patients <i>prescribed</i> regular (as opposed to PRN) NSAID and Paracetamol | Target 100% | | Grade A | % patients administered regular NSAID and Paracetamol | Target 100% Analgesics may be omitted for pragmatic reasons e.g 'patient sleeping' modifications of protocols e.g. change of route of administration, use of longer acting preparation. May reduce number of omitted doses. | | Epidural analgesia with LA is effective following major abdominal surgery. The addition of opioid or clonidine may further improve analgesia but side effects are also increased: Grade B | % patients experiencing PONV, itching, drowsiness, hypotension etc during epidural analgesia | Assess rates of side effects and modify practice in order to reduce incidences. Reaudit | Fig 1. Algorithm or guideline implementation: ## Is guideline relevant to our practice? ## If yes - 1. Identify an 'Implementation-lead' - 2. Carry out a baseline assessment of current practice # Does current practice comply with recommendations? e.a Is developmentally appropriate pain assessment in use? Are effective analgesic strategies available and in use? ## If no - 1. Identify areas needing action - 2. Identify barriers to change (e.g. staff training, availability of analgesics or equipment) - 3. Assess cost ## Develop an action plan Disseminate and implement plan Review and monitor effectiveness #### REFERENCES Getting the right start: National Service Framework for Children. National Institute of Clinical Excellence available at: www.nice.org.uk/usingguidance/implementationtools/implementation_tools.jsp Scottish Intercollegiate Guideline Network available at: www.sign.ac.uk/guidelines/fulltext/50/section9.html University of York. NHS Centre for Reviews and Dissemination. Getting Evidence into Practice. Effective Health Care 1999; 5 available at: www.york.ac.uk/inst/crd/ehc51.pdf # **Appendix 3** # **Research Implications** There have been substantial improvements in the quantity and quality of studies investigating the measurement and treatment of acute pain in children during the period covered by this guideline1996-2006. Nevertheless, only 1/3 of recommendations were based on evidence derived from randomised controlled trials assessed as being of the highest quality. The problems of conducting trials in children are well recognised, and have been discussed elsewhere, as have strategies and initiatives for overcoming them. Variability in trial design, heterogeneity in patient groups, lack of standardisation of outcome measures, low numbers of patients recruited into trials were frequently encountered drawbacks in the studies evaluated for this guideline. ### I) Pain Assessment More data is needed regarding the clinical utility and validity of the more popular pain assessment tools; particularly as this may lead to a greater consensus in the choice of tools for specific indications. Recent meta-analyses have been undertaken to determine the best validated tools for research purposes but again, more data is required. Pain assessment for children with neurodisability and impaired communication is very under-researched, and many more studies are needed. ## II) Procedures and postoperative pain ### Effectiveness In general, studies often combined information from groups of children having very dissimilar types of procedure in a single study, making interpretation difficult. Where this was not the case data was sparse for many procedures, and some procedures could not be included because there was no data available at all. This was particularly true of more major (and rarer) operative procedures such as craniotomy or thoracotomy, but also some relatively commonplace types of surgery such as pyloromyotomy were also little studied. There were few well-controlled trials comparing the efficacy of a 'standard' analgesic technique with an alternative approach; increased numbers of such trials would be an invaluable aid to clinical decision-making. As a consequence, it was rarely possible to make comparative statements about analgesic management strategies for a given procedure. More formal adoption of a commonly accepted standard analgesic strategy for certain procedures (to which other techniques could be compared) would facilitate trial design. Similarly, where one or more techniques have been found to be effective or partially effective there are few controlled comparisons of combinations of techniques against such a standard. Studies of psychological techniques such as distraction or guided imagery frequently do not describe clearly the specific content of the intervention which makes comparison between studies difficult. Standardisation of such techniques e.g. by using a specified protocol or manual would assist with both further study and with implementation of strategies. #### Risk-benefit Clinical decision making always includes an evaluation of the possible risks and benefits of a particular pain management strategy for an individual patient and setting. Although many studies report side-effects, the small size of the majority of paediatric studies precludes assessment of the frequency of rarely occurring adverse effects although they may be of clinical significance e.g. neurological deficits following complex local anaesthetic techniques. Improved reporting of such effects and larger multicentre studies are needed that evaluate these risks and benefits for individual procedures and patient groups. #### Cost-effectiveness The cost effectiveness of interventions for acute pain management has been little studied. Increasingly, organisations providing heathcare require this kind of information before implementation of new strategies can be supported. Clearly this is an area of research in need of substantial development. # Appendix 4.0 # **Data extraction tables** Pain Assessment Page 2 Medical Procedures Page 36 Surgical Procedures Page 84 # **Pain Assessment** | AUTHOR | STUDY
DESIGN/
TYPE | NO. OF
PATIENTS
/PARTICS | PATIENT/PAR
T.
CHARACTERI | PAIN TOOLS
USED | RESULT & CONCLUSION | LIMITATIONS | PROBLEMS | LEVEL.
CMMNTS | |---------------------------|--|--|---|--|--|--|--|------------------| | Vetter & Heiner
(1996) | Prospective, comparative study | n=30 children
n=3 HCPs | 8-16
years,
(surgical
procedures
including
orthopaedic,
plastic,
urologic, and
general
surgery) | VAS (0-10) - smiling anchor as 0. 10cm slide-rule. Independent pain-related behaviour score (0-100) | Variable and minimal correlation between VAS & observational score. | Pain related
behaviour
tool not
validated. | Page 3 of 14 The pain behaviour score not validated; just clinical impression based on facial expression, activity level and breathing pattern | 18
2- | | Foster & Varni.
(2002) | A descriptive, correlational design. Phase 1: initial testing; Phase 2: instrument testing | n=55 parent/child
dyads
(n=5, phase 1;
n=50, phase 2) | 8-12 yrs
50%
boys/50% girls
Range of
backgrounds. | The Child
TQPM
and Parent
TQPM | Good criterion-
related validity
and initial support
for construct
validity were
demonstrated | Smiley face
used as
anchor for
no pain | Needs larger more diverse population to be tested on. | 2- | | Falanga et al.
(2006) | Prospective comparative study of two independent groups | n = 112 n=56 in control group (n=25 girls, n= 31 boys). n= 56 in algorhythm group (n=18 girls, n=38 38 boys) | 5-17 yrs Children post surgery, trauma or other painful medical conditions | VAS | Use of a standardised algorhythm = better analgesic outcomes. Improvement in child well being without increased opioid dosages. | Not randomised. Potential for contaminatio n. Focus on mod not severe pain. Use of VAS limits findings to children aged ≥ 5yrs Delay between 2 phases of study. | | 2 | | Goodenough et al. (1997) | Comparative
design | n=50
n=27 boys, n=23
girls | 4-6yrs Routine immunization injection at clinic | Faces Pain
Scale Poker Chip Tool Visual Analogue Toy | Clinical utility demonstrated for FPS. Observer ratings: poormod correlation with self-report scores. | Small sample | | 2- | | Von Baeyer &
Spagrud
(2007) | Systematic review | n/a | n/a | Observational (behavioural) tools | observational pain scales identified for review. Specific scales recommended for specific situations. No scale recommended for chronic or recurrent pain. No single observational measure is broadly recommended for pain. | | 2++ | |-----------------------------------|--|---|--|---|---|---|-----| | Yeh (2005) | Development,
design and
validation of
Asian version
of existing tool | n=370
Study 1: n=53
Study 2, n=
220
Study 3,
n=149 | 3-7 years. Study 2: day care centre. Study 3: children post general anaesthetic for outpatient clinic surgery | Oucher Pain
Intensity Scale
(OPIS)- Asian
Version,
VAS,
Hester's Poker
Chip Tool
(HPCT), | Children preferred to use the picture Oucher scale. Statistically significant differences in scores were obtained during pain | Final decision
about pictures
made by
'experts', not
by children
who will use
the scale.
Did not assess
effect of | 2++ | | | | | | Child Medical
Fears Scale
(CMFS),
Faces, legs
activity, cry
and
consolability
Pain Scale
(FLACC)
Scare scale. | episode for each of pain scales. Convergent, discriminant and clinical validity was proven for male & female version of Asian Oucher. | completing all
the tools on
the Asian
Oucher. | | | |--------------------------|--|--|--|--|--|---|-------------------------------------|----| | Ballantyne et al
1999 | Randomized,
crossover
design to
validate tool | n=43 | 24-40 weeks GA < 28 days of life at data Level III outborn neonatal intensive care unit | PIPP | Construct validity: good Inter- & intra- rater reliability: excellent. Clinical utility: high | | | 2+ | | Stevens et al.
1996 | Prospective
and
retrospective
design to
develop and
validate tool | | | PIPP | Beginning content & construct validity demonstrated. | Convenience sample | | 2+ | | Ambuel et al. | Scale
development | n=37 n=28 infants, n=17 preschoolers, n= 2 primary school | 0-204 months In ITU receiving IMV or CPAP (various | COMFORT
scale
VAS | Inter-rater agreement & internal consistency: high. | Sample not
representative
of school-aged
children &
adolescents | Assessing distress rather than pain | 2- | | | | children, n=3
adolescents.
n= 17 boys,
n=20 girls | diagnoses) | | validity: high (assessed against PICU nurses global ratings) Suggests COMFORT scale is valid measure of children's distress as perceived by experienced clinicians | | | |--------------------------|--------------------------------|---|---|--|---|--|----| | Breau et al. (2001) | Observational videotape | n=123
n=67 boys
n= 56 girls | 4-5yrs Preschoolers receiving routine vaccinations. Varying past 'medical' experiences | Child Facial Coding System (CFC) VAS (used by parents). Faces Pain Scale (used by children). | Facial actions (pain face * brave face) change according to pain. Parents', children's and technicians' ratings correlate. | Limited generalisability to children of other ages. May not apply to intense pain situations (only 33 children rated pain as 3 or greater). | 2- | | Caljouw et al.
(2007) | Repeated
measures
design | n=57
n=12 (28-
29w); n=11
(30-31w);
n=12 (32-
33w); n=12 | 28-37 weeks
gestational
age; ≤7 days
old | Adapted
COMFORT
scale
VAS | Items of scale: high internal consistency. Valid & reliable instrument. Clinical utility. | Potentially not generalisable to seriously ill premature infants. | 2- | | | | (34-35w);
n=10 (36-37w) | | | | | | |----------------------------|--|--|--|---|--|---|----| | Van Dijk et al
(2000) | Observational study to test reliability & validity of tool | n=158
n=56, 0-4
weeks; n=47,
1-6 months;
n=23, 7-12
months; n=32
1-3 yrs | 0-3yrs Neonates and toddlers after major abdominal or thoracic surgery | COMFORT scale VAS for pain. | COMFORT: inter-rater reliability good apart from 'respiratory response'. HR & BP measurement: limited validity. COMFORT does assess postop pain in population. | Relatively small sample size; multiple testing. Sample skewed (more infants than 1-3 year olds). | 2- | | Grunau et al.
(1998) | Real-time
observation
based study | n=40 | 32 weeks
gestational
age | Neonatal
Facial
Coding
System
(NFCS) | Inter-observer reliability: high. Construct validity (at bedside): demonstrated. | Bed side
coding of
behaviour
does not
permit blinding
of raters to
events | 2- | | Hartrick &
Kovan (2002) | Prospective single blinded observational study. | n=51 Stage 1: n=20 (postop pain) Stage 2: n=23 (non painful events) Stage 3: n=12 | 1-5 yrs Children emerging from general anaesthesia following elective oto- laryngology, urology & non painful | Toddler Preschooler Postoperative Pain Scale (TPPPS), Faces, Legs, Activity, Crying, Consolability scale (FLACC) | TPPPS, FLACC & modified COMFORT scale (used purely as a behavioural tool) can be recommended for postop assessment. | The act of scoring each tool may affect the scoring of the other tools. Only small sample so reduces power of statistical tests. | 2- | | | | | radiology
procedures | COMFORT
Scale
(modified). | TPPPS: significantly better performance in discriminating between painful /non painful situations. | | | |---|-------------------------------------
---|---|--|--|---|----| | Jonsdottir &
Kristjansdottir
(2005) | Crossover
design | n=24
n=12 girls,
n=12 boys | 24 -42 weeks
gestational
age at birth
< 28 days of
life at data
collection | Premature
Infant Pain
Profile (PIPP) -
Icelandic
Translation | PIPP measure is sensitive to a painful event & differentiates between stress & pain in a clinical context across linguistic barriers | Convenience sample | 2- | | Lilley et al.
(1997) | Observational videotape based study | n=75
n=15, 2-4
months, n=15,
4-6 months,
n=15, 6-12
months, n=15,
12-18, n=15,
18 months | 2-18 months Infants undergoing routine immunization injections | Infant Characteristics Questionnaire (ICQ), Neonatal Facial Coding System (NFCS), Baby FACS. | Consistencies in facial displays over age groups. Differences on both measures of facial activity. Least pain expressed by four month age group. | Video recorder may have affected the infants' responses Face of the child sometimes also obstructed. Sub sample sizes: too low to infer statistical power to tests. | 2- | | | | | | | Temperament not related to the degree of pain expressed. | Age groups do not contain equal intervals. | | |------------------------|--|---|--|----------------------|---|--|----| | McNair et al. (2004) | Prospective, repeated measures, correlational design | n=51 n=6 (28-31 weeks; 5 boys, 1 girl) n=10 (32-35 weeks, 5 boys, 5 girls) N=36 (>36 weeks, 25 boys, 10 girls) | 28–42 weeks gestational age Post surgery | PIPP
CRIES
VAS | Correlation indicated across the 3 measures. Convergent validity showed correlation, especially in 1st 24hrs. PIPP & CRIES valid for 1st 72 hrs post surgery. | Convenience sample The 2 surgical categories used would not necessarily be easy to replicate. | 2- | | Mathew & Mathew (2003) | Review paper | n/a | n/a | n/a | Identifies risk of adverse long term effects on infants. Preventative, therapeutic strategies, objective assessment & caregiver sensitivity | Review only | 3 | | | | | | | identified as integral to good management. | | | | |-------------------------|------------------------------------|-----|-----|---|---|--|---|---| | Lyon &
Dawson (2003) | Evaluative
literature
review | n/a | n/a | Oucher Children's Hospital of Eastern Ontario Pain Scale (CHEOPS) | 12 papers (3 addressing subject indirectly). Disagreement as to whether CHEOPS correlates to Oucher score. No agreement as to whether the CHEOPS is more/less reliable in different age groups. | | Further studies needed, using a larger sample, in a range of clinical situations. | 4 | | Merkel (2002) | Discussion of tool | n/a | n/a | Finger Span
Scale | Discussion of potential for using scale for young children Proposed it could be used alongside tools such as FLACC. | No research
evidence, no
empirical
evidence
although
potential
benefits
identified. | Still based on children understanding difference between 'a little' and 'a lot' | 4 | | Breau et al
(2002) | Longitudinal observational validation study | n=24 parents | 3–19 yr Children with severe intellectual disabilities | Non- communicatin g Children's Pain Checklist- Postoperative Version (NCCPC-PV) VAS | Internally reliable. Interrater reliability: good. Sensitivity and specificity for classifying children with mod-severe pain Good psychometric properties. Potential clinical utility | Small sample size. Cut-off scores for inferring presence of mod-severe pain should be seen as preliminary | 2+ | |-----------------------|---|--|---|---|---|---|----| | Breau et al
(2003) | Survey based attitudes study | n=65 n=52 parents n=13 health care providers | 3-18yrs Children with significant cognitive impairment (17 months adaptive age - Vineland Adaptive Behavior Scale) | Pain Opinion
Questionnaire | Caregivers believed children's pain sensation becomes greater relative to children without CI as severity of CI increases. Believed children with mild CI may over-react to pain. These beliefs | Caregivers' beliefs and experiences with their own child's pain may have influenced their responses. Expressed attitudes may not reflect expressed behaviour | 2+ | | | | | | | could impact
children's
care. | | | |-----------------------|--|--|---|---|--|--|----| | Breau et al
(2000) | | n= 55 n= 32 caregivers; part 1 of study n=33 caregivers | 3-44 yrs individuals with cognitive impairments | Non-Communicating Children's Pain Checklist | Internal consistency exhibited. Sensitivity: good. Reliable over time. Good psychometric properties. Potential clinical utility. | Potential that endorsement of items could have been influenced by recall biases, or by a priori judgement that pain was occurring. | 2+ | | Breau et al. (2001) | Determination
of whether
typical pain
behaviour can
predict future
pain behaviour | n= 99
caregivers
n=36 (sample
1);
n=63 (sample
2) | Mean age 14yrs (sample 1) & 11yrs (sample 2) Individuals with cognitive impairments and with no ability to communicate verbally | Non-Communicating Children's Pain Checklist | Subset of items from NCCPC can predict pain | Heterogeneity of the groups in terms of diagnosis. Cls of the odds ratios generated for individual items were large | 2+ | | Hunt et al. (2004) | Clinical
validation
study | n=140
n=76 girls, n=
64 boys | 1-18yrs (mean
age 9yrs,
11mnths) | Paediatric
Pain Profile
(PPP) | Internal
consistency
excellent.
Face,
concurrent & | Validity of proxy ratings open to question, although | 2+ | | | | | Severe
neurological &
cognitive
impairments | | construct validity established. Reliable, valid tool. Potential clinical utility. | limited options within this population. Scorers not blinded to administration of analgesia | | |-------------------------------|---|---|--|--|---|---|----| | Malviya et al. (2006) | Evaluation of validity & reliability of revised & individualised tool | n=52 12 children able to self- report using simple scale | 4-19yrs Children with cognitive impairment | FLACC
Simplified
Faces Scale
Verbal (0-10)
Numbers
Scale
Simple Word
Scale – (little,
medium, big) | Interrater reliability: excellent. Criterion validity and construct validity demonstrated. Reliability & validity of FLACC for children with CI | Results limited to post-operative pain | 2- | | Voepel-Lewis
et al. (2005) | Observational study | n=52
4 -19 years | 4 -19 years Children with CI & their parents/guardi ans | FLACC Simplified Faces Scale Verbal (0-10) Numbers Scale SimpleWord | 1 parent under-estimated, 3 parents over-estimated. Parents estimates of child's pain reasonable, | Results limited to postop.
pain | 2- | | | Scale – (little,
medium, big) | especially if using pain tool. | | | |--|----------------------------------|--|--|--| | | | Tendency to overestimate during the early postop period. | | | | Chambers et al. (1996) | Development
& preliminary
validation of
tool | n=110 children
(and parent)
56.4% male | 7-12 years Day case surgery (high, moderate & low/no pain surgeries) | Parent's Postoperative Pain Measure Faces Pain Scale | Evidence of validity for 15-item PPPM for use with children (7-12yrs) following day surgery. Internally consistent and strongly related to child-rated pain. | External (interrater) reliability not assessed. | 2- | |------------------------|--|---|---|--|---|---|----| | Chambers et al. (2003) | Replication,
extension of
age group and
validation
study | n=158 children
(& parent)
n=51 children
(7-12 yrs);
n=22 girls,
n=29 boys
n=107 children
(2-6 yrs);
n=38 girls, n=
69 boys. | 2-12 years Day surgery | Parent's Postoperative Pain Measure Faces Pain Scale (FPS) | Evidence of validity for 15-item PPPM demonstrated. Evidence of reliability & validity of PPPM as a measure of postoperative pain (2-12yrs) | External (interrater) reliability not assessed. | | | Finley et a. (2003) | Development
of construct
validity of tool | n=103
Study 1: n=75;
n=30 girls,
n=45 boys | 7-12 years Day surgery associated with at least moderate pain. | Parent's Postoperative Pain Measure Faces Pain Scale (FPS) | Evidence of validity for 15-item PPPM demonstrated. | External (interrater) reliability not assessed. | 2- | | | | Study 2: n=28;
n=7 girls, 21
boys | | Stait-trait
Anxiety
Inventory for
Children
(STAIC). | PPPM can differentiate pain from anxiety. Further support for construct validity of the PPPM Confirmation as valid pain parental assessment tool for use at home following children's surgeries. | | | | |-------------------------|---|---|--|--|--|--|--|----| | Kankkunen et al. (2003) | Descriptive study of parents' perceptions | n=210
mothers
n=114 fathers | Parents Children had undergone day surgery | VAS Parents Postoperative Pain Measure (PPPM) – Finnish version. Questionnaire | Parents' perceptions related to children's intensity & behaviours after surgery. Fathers accepted children's pain more than mothers. Boys expected to tolerate pain | Rating the pain intensity with VAS scores may have been difficult for some parents. Sample not representative of population | Doctors on strike
during study
period: impacted
on questionnaire
distribution; some
surgeries
cancelled. | 2- | | | | | | | more than girls | | | |---------------------|--------------------------------|------------------------------|-------------------------|---------------|---|-----------------------|----| | Kokki et al. (2003) | Validation of existing tool in | n=58 children
(& parents) | 1-6 yrs | PPPM | Construct validity was | Non random sampling & | 2- | | , , | Finnish children | | At home after minor day | VAS | satisfactory. | small sample size. | | | | | | surgery | Questionnaire | Convergence validity, predictive validity, internal consistency and equivalence all | | | | | | | | | demonstrated. | | | | de C Williams
et al (2000) | Descriptive,
qualitative-
inductive | n=78
n= 56 women | Mean age 46
yrs
(range 22±71 | VAS
Numerical | Lack of concordance between & | Transferability to non chronic pain patients | 2- | |-------------------------------|---|---------------------|------------------------------------|---------------------|--|--|----| | | interview
design | n=22 men | yrs) | Rating Scales (NRS) | consistency
within patients
suggests | (and to child population) | | | Simons et al. | Phenomen- | n=40 | Chronic pain patients Children post- | | ratings incorporate multiple partially differentiated dimensions of pain. Lexical & numerical labels assigned to scale end- points affect use. | Small sample. | 2- | |---------------------------------|--|---------------------------------|---------------------------------------|-----------------------------------|---|---|----| | (2001) | ological
interview
design | n=20 (parents)
n=20 (nurses) | op from mod-
major surgery | | their involvement was superficial & limited; their role was passive & expressed | Children's perceptions not elicited. | | | | | | | | frustration. | | | | Simons &
MacDonald
(2006) | Action
research (AR)
– survey, audit
& intervention | n=100
(survey) | Nurses | FLACC Wong & Baker Faces Tool VAS | Change (action) did occur but it was complex and barriers existed. Use of a pain assessment | Time constraints limited engagement of participants. Some senior sisters did not engage/ | 2- | | | | | | | tool rose to | support the | | | | | | | | 40% but some nurses still resistant. | AR. | | |--------------------------------|--|---|---|---|--|---|----| | Simons &
Roberson
(2002) | Phenomen-
ological
matched
interview, note
review design | n=40
n= 20 (nurses)
n=20 (parents) | Nurses & parents | | Even when nurses' pain management knowledge was deficient, they expected parents to have a level of knowledge they did not possess. Poor communication with parents evident & impeded effective pain management. | Small sample size. No respondent checking. | 2- | | Treadwell et al. (2002) | Quasi-
experimental
design –
intervention,
chart audit | n=85 children n=150 staff n=36 children; n= 68 staff (Time 1) n=49 children, n= 82 staff (Time 2) | Children primarily over 8 yrs of age; some 3-8yrs Staff: nurses, physicians, psychosocial staff. | Postoperative Pain Score CHEOPS Faces Scale NRS Word graphic scale APPT | Intervention
enhanced pain
assessment,
staff
responsive-
ness,
satisfaction
with tools,
compliance
with pain
assessment
documentation | Convenience sample Lack of representation of children < 3 yrs. Caregiver & patient reports combined. | 2- | | Broome et al
(1996) | Survey design | n=113 Healthcare professionals in teaching hospitals | Two-thirds
nurses, one
third doctors.
Range of
specialities. | Questionnaire | 60% sample had standards of care/ protocols in place but only 25% followed these >80% time. | 50% return rate. Inability to generalise outside of study population | 3 | |-------------------------|--|--|--|---|---|--|---| | | | | | | Low likelihood
of parental
involvement
prior to painful
event | | | | Craig et al.
(1996) | Literature
review &
proposal of a
model | n/a | n/a | Conceptual
model of
children's pain
proposed | Numerous
deterrents to
optimal care
identified,
common-place
beliefs about
the nature of
pain in infants
& children | Literature based. | 3 | | Faries et al.
(1991) | Comparative study | n=43
n=23 (control)
n=20
(treatment
group) | Adults Medical oncology | Pain
Assessment
Tool (PAT) | Treatment
group reported
significantly
lower average
pain intensity
ratings than
control. | Small scale. How transferable to child
pain population & child nursing context. | 3 | | Hodgins
(2002) | Literature
review | n/a | n/a | n/a | Utility of pain measurement is limited. HCPs no common understanding of meaning of scores generated by pain measurement tools. Instrument validity need to be broadened. | | 3 | |-------------------------|----------------------|---------------|-----------------------------------|--------|--|---|---| | Karling et al. (2002) | Survey | n=299 | Physicians
and nurses | | Under- treatment of children's pain primarily results from organisational issues & practices. Educational needs: high | Descriptive design | 3 | | Polkki et al.
(2002) | Survey | n=192 parents | 8-12yrs Paediatric surgery wards | Survey | Non-pharma-
cological
methods: well
utilized.
Cognitive-
behavioural &
physical
methods: less
frequently | Questionnaire
s completed
during child's
hospitalization
may have
increased
positive
responses | 3 | | Colontors et al | Non | n=267 nurses | Nursaa | Curvey | used. Child's gender, time of surgical procedure, & parents' assessments of child's pain intensity: significantly related to strategies used. | Dichotomous questions did not allow for indication of the frequency or intensity with which the non-pharmacologic al methods were used | 3 | |-------------------------|------------------------------|---------------|---|--------|--|--|---| | Salantera et al. (1999) | experimental
survey study | II-207 Hurses | Nurses
working in
children's
departments | Survey | Overall, attitudes do not hinder effective pain management. Age, experience, place of work, field of expertise: no significant effect. | sample | 9 | # **Medical Procedures** **INTERVENTION**: Blood sampling, Venepuncture, and heel prick in neonates | AUTHOR | DESIGN | TREATMENT | OUTCOME
MEASURE | RESULT & CONCLUSION | SIDE-EFFECT/
SECONDARY
OUTCOME &
CONCLUSION | EVIDENCE LEVEL / COMMENTS | |------------------------------|--|---|---|---|--|--| | Jain and
Rutter
(2000) | RCT
27-41
weeks(med 33)
2 – 17 days
n=40 (1
exclusion) | Amethocaine gel 1.5 g vs placebo for 1 hour prior to Venepuncture | Video recording
of facial features
and cry at 1
second intervals
for 5 secs pre
and post
Venepuncture
(neonatal facial
coding system) | 16/19 amethocaine treated infants showed little or no pain compared with 6/20 in the placebo group (p=0.001) Topical amethocaine provides effective pain relief during venepuncture in the newborn. | No local reaction seen | 1 +
(Tapes assessed
by 2 observers) | | Skogsdal et
al (1997) | RCT
Newborn
N=120 | 1ml of 30% glucose vs breast
milk and 10% glucose
infants having heel prick. Not
sucking | | 30% glucose alleviates mild pain | | Grade 1+ | | Ogawa et al
(2005) | RCT
5 days
N=100 | Heel lance alone Heel lance with pre treatment with oral sucrose Venepuncture alone Venepuncture with sucrose | Video
recordings
Neonatal facial
coding system
Crying response | Venepuncture is less painful and more effective than heel lance for blood sampling in newborn infants.(p<0.001). Pre-treatment with sucrose significantly reduced | None | Grade 1+
Single blinded
investigator | | Used 50% sucrose | (p<0.01)NCFS score for heel | | |------------------|------------------------------|--| | | lance, but this remained | | | | significantly more painful | | | | during blood sampling than | | | | venepuncture alone(p<0.01) | | | | Sucrose pre-treatment tended | | | | still further to reduce the | | | | NCFS score for venepuncture, | | | | but this was not significant | | | AUTHOR | DESIGN | TREATMENT | OUTCOME
MEASURE | RESULT & CONCLUSION | SIDE-EFFECT/
SECONDARY
OUTCOME &
CONCLUSION | / COMMENTS | |------------------------|---|---|------------------------------|--|---|---| | Shah et al (2004) | Syst rev Term infants 4 trials included (Cochrane) | Venepuncture vs heel lance for blood sampling | Validated pain
meaures | Venepuncture when performed
by a skilled phlebotomist,
appears to be the method of
choice in term neonates | Needs more
research in
settings with
multiple
phlebotomists | 1++ | | Logan
(1999) | Controlled
Clinical trial
36 newborns | Venepuncture vs heel lance for blood sampling | Audiotape of cry | Venepuncture: shorter sample collection time, length and duration of cry: p<0.05 | | 2+ (Potential confounder is that midwives at 2 centres each did only 1 technique) | | Taddio et al
(1998) | Systematic review Venepuncture 2 studies: RCCT(n= 60) | Venepuncture: after application of EMLA or placebo Cohort design: EMLA vs no | Heart rate and cry Used Pain | EMLA associated with less pain as judged by HR and cry – no significance stated Pre-treatment with EMLA associated with a higher | Emla diminishes pain for circumcision but not heel prick. It may diminish | 1+ | | and | intervention | scores | frequency of lower pain scores | pain for | | |---------------|------------------------------|---------------|--------------------------------|-------------------|--| | nonrandomized | | | (p<0.01) | venepuncture, | | | (n=116) CCT | Heelprick | | | arterial puncture | | | Neonates | | | No significant difference | and percutaneous | | | | 0.5 g EMLA in 7 term infants | | | venous placement | | | Heelprick | vs placebo | Crying during | | | | | 2RCCT's: 67 | 0.5g EMLA in 60 preterm vs | procedure | | | | | infants | placebo | PIPP profile | | | | | | | | | | | | AUTHOR | DESIGN | TREATMENT | OUTCOME
MEASURE | RESULT & CONCLUSION | SIDE-EFFECT/
SECONDARY
OUTCOME &
CONCLUSION | EVIDENCE LEVEL / COMMENTS | |--------------------------|---|---|---|---|--|---------------------------| | Carbajal et
al (2005) | RCCT
Preterm: 27+/-
1.7weeks
N=42 | Infants randomised to receive either morphine in a loading dose and then maintenance dose vs placebo: responses x 3 heel pricks before loading dose, 2 hours later and 24 hours later | Used Premature
Infant Pain
Profile | No significant difference in pain profile response to heel prick. Morphine does not provide adequate analgesia for acute procedural pain among preterm neonates | | 1+ | | Ling et al (2005) | RCCT
Newborns
admitted with
jaundice
N=52 | Infants randomised to 2 ml oral 30% dextrose or 2 ml water pre venepuncture | Videotaped. Used Neonatal Infant Pain score and duration of cry | Dextrose group significantly less cry and pain as evinced by score (p0.03) | | 1+ | | Gradin et al
(2005) | RCCT
Newborns
N=70 | Heart rate monitored whilst infants given 30% glucose or water without painful stimulus | Observed heart rate | Significant increase in heart rate during glucose administration (p=0.002) | Important to recognise that effects of increase in heart rate during venepuncture may not be due to pain alone | 1+ | | AUTHOR | DESIGN | TREATMENT | OUTCOME
MEASURE | RESULT & CONCLUSION | SIDE-EFFECT/
SECONDARY
OUTCOME &
CONCLUSION | EVIDENCE LEVEL / COMMENTS | |--------------------------|--|--|---|---|---|---------------------------| | Bauer et al
(2004) | RCT
Newborn(31 –
42 weeks)
N=58 | Randomised to 2 ml 30%
glucose, 0.4 ml 30% glucose, or water. | Videotaped pain
profile, , cry
duration, indirect
calorimetry and
heart rate before
venepuncture | 2ml glucose reduced pain
score compared with 0.4 ml
and water but did not prevent
rise on oxygen consumption,
energy expenditure or heart
rate | Suggests non painful handling causes stress – this may be reason for rise in 02 consumption despite 30% glucose | Grade 1+ | | Carbajal et
al (2003) | RCT
Newborn – term
N=180 | Gp 1: breast fed, gp 2: held
in mothers arms, gp3 –
given water, gp 4: 1ml
30%glucose followed by
pacifier prior to venepuncture | Aigue Nouveau-
ne scale and
PIPP | Breast feeding and 30% glucose group both significantly better than other groups(p<0.0001). No difference between these 2 groups | Breast feeding
equivalent to 30%
glucose + pacifier
in terms of
analgesia | Grade 1 + | | Gradin et al
(2002) | RCT
Newborns
N=201 | Compared EMLA on skin
+oral placebo, with Placebo
on the skin and 30% glucose
orally for venepuncture | Premature Infant Pain profile, heart rate and crying time | Pain scores and duration of crying were significantly lower in the glucose group than the EMLA group | Did not control for pacifier | Grade 1- | | AUTHOR | DESIGN | TREATMENT | OUTCOME
MEASURE | RESULT & CONCLUSION | SIDE-EFFECT/
SECONDARY
OUTCOME &
CONCLUSION | EVIDENCE LEVEL / COMMENTS | |--------------------------|---|---|---|---|---|---------------------------| | Gradin et al
(2004) | RCT
Full term
newborns
N=120 | During venepuncture: Gp 1: breast fed and 1ml placebo, gp2 breast fed and 1 ml 30% glucose, gp3: fasting and placebo, gp4: fasting and 1ml 30% glucose | Premature infant Pain profile Crying time Parents rating on a Visual Analogue score | PIPP score significantly lower in infants receiving glucose(p-0.004) Breast feeding before venepuncture had no major impact on the pain score but reduced the crying time | | 1+ | | Carbajal et
al (2002) | RCT – crossover trial Preterm neonates(< 32 weeks) N=40 (25 in trial1, 15 in trial2) | During sc injections of erythropoietin Trial 1: 0.3ml 30%glucose vs placebo Trial 2 0.3 mo 30% glucose with or without a pacifier | Pain using the
Douleur Aigue
Nouveau ne
score | Significantly less pain with glucose vs placebo No additional effect of using a pacifier NB: 7 neonates in glucose group had slight but brief O2 desaturation. | These are very pre term infants – this could account for differences with sucking Recommend continous monitoring of preterm neonates receiving intervention | 1+ | | Bellieni et al (2002) | RCT
Newborn
N=120 | During heel prick: Gp A: Control Gp B:1ml 33% oral glucose+ sucking 2 mins before procedure Gp C: Sucking Gp D:1ml glucose +sucking GpE: Multisensory massage including 1 ml glucose+ sucking GpF: Multisensory massage | Video Assessment of pain using Douleur Aigue Nouveau ne score | Gp D and Gp E the most effective E> effective than D | (Pacifiers not used but syringe giving fluid used to stimulate sucking) | 1+ | | and placebo | | | |--|--|--| | (mulit sensory massage
massaging infant, talking to
infant, allowing infant to smell | | | | perfume on therapists hands) | | | ## **INTERVENTION**: Heelprick venepuncture PICC line insertion in infants | AUTHOR | DESIGN | TREATMENT | OUTCOME
MEASURE | RESULT & CONCLUSION | SIDE-EFFECT/
SECONDARY
OUTCOME &
CONCLUSION | EVIDENCE LEVEL / COMMENTS | |----------------------|---|--|------------------------------|---|---|---------------------------| | Stevens et al (2004) | Sys Rev (Cochrane) RCT's in term and preterm infants – up to 28 days post 40 weeks gestational age Sucrose for analgesia in newborn infants | 44 studies identified for inclusion in review 21 actually included (1616 infants) 9 evaluated preterm infants 11 term 1 both | | Sucrose is safe and effective for reducing procedural pain from single painful events (heel lance, venepuncture). There was inconsistency in the dose of sucrose that was effective (dose range of 0.012 g to 0.12 g), and therefore an optimal dose to be used in preterm and/or term infants could not be identified. The use of repeated administrations of sucrose in neonates needs to be investigated as does the use of sucrose in combination with other behavioural (e.g., facilitated tucking, kangaroo care) and pharmacologic (e.g., morphine, fentanyl) interventions. Use of sucrose in neonates who are of very low birth weight, unstable and/or ventilated also needs to be addressed. | Suggested
sucrose had
greater analgesic
effect when given
2 mins before
painful stimulus | 1++ | | Johnston et | RCT
Preterm infants | Sucrose (0.1ml of 24%) or water given up to 3 times, 2 | Neurobehaviour al Assessment | No significant differences between the groups on any | Not examined post discharge. | 1- | | al (2000) | <31 weeks at
birth
N=107 | minutes apart for every invasive procedure over a 7 day period | of the Preterm
Infant at 32, 36,
and 40 week
Neurobiological
Risk
score(NBRS) at
2 weeks of age
and at discharge | outcomes but in sucrose group only higher numbers of doses predicted lower scores on motor development and vigour. In placebo group only higher numbers of interventions led to higher NBRS scores | Could only examine those not discharged to other centres at term. Concerns that < 32 week infants might potentially be at neurodevelopmen tal risk from too many doses of sucrose | | |----------------------|--------------------------------|---|---|--|---|----| | Stevens et al (2005) | RCT
Preterm infants
N=66 | Gp1: standard care : positioning and swaddling Gp2: sterile water +pacifier Gp 3:sucrose 24% + pacifier Prior to all painful procedures | Clinical outcome
data and
neurobiological
risk at 28 days
of NICU
discharge | No group differences for
adverse effects or clinical
outcomes or neurobiological
risk status.
Sucrose+ pacifier was
effective and safe | Need further exploration of consistent pain management on clinical, developmental and neurobiological outcomes | 1+ | | Taddio et al
(2006) | RCT.Double
blind.
132 neonates
(mean gestation
30.6 weeks) | Randomized to receive tetracaine, morphine or both for alleviating pain in ventilated neonates prior to central line insertion. Separate non randomised control group | Pain score during different phases of procedure – and observed effect of drugs on need for ventilatory supposrt and skin reactions | Morphine and Morphine + tetracaine groups lower pain scores than tetracaine alone. | Morphine infants
needed more
ventilatory
support, 30%
tetracaine
patients had skin
reactions | 1+ | |------------------------|--|---|--|--|--|----| | | RCT | Compared: no treatment | DAN score (a | Pacifiers more effective than | | 1+ | | Carbajal et | 150 newborns | Placebo(2ml |
behavioural pain | sweet solutions alone. | | | | al (1999) | having newborn
screening(
venepuncture) | water) 2ml glucose 30% 2 ml 30% sucrose pacifier 2 ml 30% sucrose + pacifier | score) | Sucrose+ pacifier showed trend to lower score than pacifier alone | | | |---------------------|--|---|--|---|--|----| | Lemyre et al (2006) | RCT
54 infants 27+/-
2 weeks
gestation
requiring PICC
lines | Tetracaine 4 % gel (Ametop ®) compared with placebo | PIPP score
during initial
venepuncture
and then during
insertion phase | No difference between the 2 groups | Infants PIPP scores were in the 'moderate' range suggesting that infants felt discomfort | 1+ | | Shah et al (2006) | Cochrane review Effectiveness of breast feeding or breast milk in reducing procedural pain in neonates | 11 studies identified | | If available, breast feeding or breast milk should be used to alleviate procedural pain in infants undergoing a single painful procedure, compared to placebo, positioning or no intervention. Glucose/sucrose had similar effectiveness as breast feeding for reducing pain. | The effectiveness of breast feeding for repeated painful procedures is not established and further research is needed. | 1++ | |-----------------------|--|--|---------------------------------|---|---|-----| | Shah et al
(1998) | RCT Double blind 75 term neonates undergoing heel prick | Randomised to receive 20 mg/ kg paracetamol or placebo 60 – 90 minutes before heel prick for newborn screening | Infant facial and cry duration. | No difference between the two
groups – paracetamol does not
reduce the pain of heel lance | | 1+ | | Cignacco et al (2007) | Systematic literature review of non pharmacological interventions management of procedural pain in preterm and term neonates | 13 RCCT and 2 meta
analyses were studied
including:
Nutritive and non nutritive
sucking
(5 papers). Music (2),
facilitated tucking (3),
swaddling(3), positioning (3),
olfactory
stimulation/multifactorial
stimulation(2), kangaroo
care/maternal touch(2) | | There is evidence that the methods of 'non nutritive sucking', 'swaddling' and 'facilitated tucking' have a pain relieving effect in neonates | Conclusions: Some of the non- pharmacological interventions have an evident favourable effect on pulse rate, respiration and oxygen saturation, on the reduction of motor activity, and on the excitation states after invasive measures. However, unambiguous evidence of this | 1++ | | Barker et al
(1994)
Paes et al
(1993) | 187 heel prick procedures in 47 infants 40 health full term infants for | Randomly assigned 2 different lancet types - Autolet2 or Tenderfoot Preemie Randomized trial comparing automated lancet for heel | Behavioural responses. Collection times. Total blood, blood sampling | No significant difference in behavioural response or times for collection of small to medium amounts of blood, but Tenderfoot device superior for large volumes(>1ml) Total volume and blood sampling time significantly | still remains to be presented. Further research should emphasise the use of validated pain assessment instruments for the valuation of the pain-alleviating effect of non-pharmacological interventions. expensive | 1- | |--|--|---|---|--|--|----| | | newborn
screening test | pricks with manual device | times,pain (measured by crying times) and degree of bruising | better with automated lancet (p<0.001) | | | | Shepherd et al (2006) | 340 healthy
newborns
undergoing
screening test | Randomly assigned to heel prick via Tenderfoot or Genie-Lancet | Quality of sample Time taken No of heel pricks If needed to squeeze heel Pain expressed by infant | Tenderfoot device saved significant time, fewer no of heel pricks needed. | Pain assessed by length of cry only | 1+ | | Shah et al (2003) 80 neonates – healthy undergoing newborn screening test Compared BD safety flow lancet with BF QuikHeel | bruising Facial grimacing score during puncture and heel squeeze Cry duration, duration of the procedure, number of punctures required | QH group required fewer punctures and less crying. Pain scores during squeezing did not differ | | 1- | |---|--|--|--|----| |---|--|--|--|----| **INTERVENTION**: Examination for retinopathy of prematurity (ROP). | AUTHOR | DESIGN | TREATMENT | OUTCOME
MEASURE | RESULT & CONCLUSION | SIDE-EFFECT/
SECONDARY
OUTCOME &
CONCLUSION | EVIDENCE LEVEL / COMMENTS | |--------------------------|--|---|---|--|--|---------------------------| | Mitchell et al
(2004) | RCT
30 preterm
infants having
ROP exams | Randomized to either: local anaesthetic eye drops+ pacifier+ 3 doses of sterile water or: local anaesthetic eye drops+ pacifier+ 3 doses of 24% sucrose during eye exam | Premature Infant Pain Profile (PIPP) measures physiological variables and behavioural state | During exam less distress in sucrose group but no difference after exam | Sucrose and a pacifier may be helpful during eye exam in infants who have already had local anaesthetic eye drops | 1+ | | Grabska et al
(2005) | 32 infants
RCT | Randomized to receive either sucrose or sterile water during eye exam | PIPP. Crying time | No significant difference
between groups
Sucrose group had small but
significant drop in O2 sats after
admin | Sucrose alone not sufficient Potential bias: infants described as being offered a pacifier but those receiving this intervention not separately considered | 1- | | Marsh et al (2005) | RCT
22 infants, < or
= 30 weeks
gestation | Randomized to either saline or proparacaine 0.5 % eye drops, receiving alternate treatment at second scheduled eye exam | PIPP – at 1 and
5 minutes
before and after
the eye exam
and at insertion
of the speculum | Significantly less pain at speculum insertion than with saline | Local anaesthetic
drops should
become routine
practice | 1+ | | Gal et al
(2005) | RCT
23 infants < or =
to 30 weeks | All had local anaesthetic drops. Randomized to receive either 2 ml of sucrose or 2 ml or water orally immediately prior to eye exam. | PIPP – at 1 and
5 minutes
before and after
the eye exam
and at insertion
of the speculum | For 3 of 5 responses significantly less pain at speculum insertion with sucrose than with placebo | Oral sucrose may
reduce immediate
pain response to
eye exam | 1+ | |-----------------------|---
--|--|---|--|----| | Boyle et al
(2006) | RCT 40 infants < 32 weeks gestation or birth weight blinded to study drug but not to pacifier | 2 mins before first screening exam: either (i) 1 ml sterile water- syringe (ii) 1 ml sucrose 33% - syringe (iii) 1 ml sterile water - syringe +pacifier (iv) 1ml sucrose syringe+pacifier | Videotaped
during exam
and until 2 mins
after. PIPP for
1 st eye,
physiological
variables
thereafter | Infants randomised to pacifiers scored significantly less than those without. Sucrose did not appear to have a synergistic effect in this study | Possible that a synergistic effect might be seen if repeated doses of sucrose given (see Mitchell) | 1+ | #### INTERVENTION: Lumbar puncture neonates and infants | • | | |---|--| | | | | AUTHOR | DESIGN | TREATMENT | OUTCOME
MEASURE | RESULT & CONCLUSION | SIDE-EFFECT/
SECONDARY
OUTCOME &
CONCLUSION | EVIDENCE LEVEL / COMMENTS | |------------------------------------|--|--|--|--|---|---| | Crock et al
(2003) | Questionnaire
survey of
children (< 18
years)with
cancer and
families
undergoing
repeated painful
procedures eg
LP or bone
marrow (96
children) | Either midazolam sedation and local anaesthetic or GA | Questionnaire to children and parents about the procedure and which they preferred | GA: 106 procedures: restraint needed 4%. 25% reported distressed Sedation and LA: 94% procedures restraint needed, 90% reported distress | 90% parents
wished for GA for
future procedures | Not further discussed in these tables but included to emphasise that children requiring repeated painful procedures should be offered GA option | | Kanagasund
aram et al
(2001) | Observational study | Observational study of children receiving nitrous oxide in relieving pain and anxiety during painful procedures. 90 children requiring bone marrows, LP's, venous cannulation, dressing change | Observational Scale of behavioural distress scores pre, during and post procedure | Scores highest (most distress) during induction phase, with subsequesnt lower scores Most suitable for children over 6 and for short procedures | Few side effects .
mean recovery
time 3 minutes | 2+ | | Kaur et al
(2003) | Sixty consecutive newborns (gestational age, 234 weeks) undergoing diagnostic lumbar puncture | Topical application of 1 g of EMLA or placebo 60 to 90 minutes before lumbar puncture. | Heart rate,
transcutaneous
oxygen
saturation level,
and total
behavioral score
recorded on a
video camera
and graded | Lumbar puncture in newborns produces pain responses. Eutectic mixture of local anesthetics is an efficacious agent for reducing the pain associated with needle insertion and withdrawal during lumbar puncture in newborns. | | 1+ | | | | | according to the
Neonatal Facial
Coding System. | | | | |--------------------------|--|---|--|---|--|-------------------------| | Carraccio et al (1996) | RCCT
100 infants less
than 3 years
requiring LP | Randomized to receiving lidocaine subcutaneously or placebo prior to LP | Comparison of
number of
attempts
needed to
obtain CSF and
no of traumatic | No difference between groups in ease of obtaining CSF,. Slightly more traumatic taps in lidocaine group | | 1-
Non blinded study | | Uman et al
(2006) | Cochrane review: Psychological interventions for needle related procedural pain and distress in children and adolescents | 28 trials with 1951 participants age 2- 19 years. Only used RCT's with at least 5 participants in each arm comparing a psychological intervention group with a control or comparison group were eligible. | taps | Largest effect sizes seen for treatment improvement over control exist for distraction, hypnosis, combined cognitive – behavioural interactions . | Health professionals should be aware of the value of incorporating psychological strategies for procedural pain and distress into practice with children | 1++ | | Eidelman et al
(2005) | Systematic
review of
randomised
controlled trial
25 trials
identified – 2096
subjects | Compared the analgesic efficacy of topical anaesthetics for dermal instrumentation with conventional local anaesthesia. Also compared other LA agents to EMLA | | EMLA vs intradermal LA: no significant difference but EMLA advantageous because less painful to apply EMLA compared with tetracaine, liposome encapsulated tetracaine and liposome encapsulated lidocaine (ELA Max) | Liposomal
lidocaine in the
US is less
expensive than
EMLA and has a
more rapid onset
of action | 1++ | | Stevens et al (2004) | Sys Rev
(Cochrane)
RCT's in term
and preterm
infants – up to | 44 studies identified for inclusion in review 21 actually included | | Sucrose is safe and effective for reducing procedural pain from single painful events (heel lance, venepuncture). There was | Suggested
sucrose had
greater analgesic
effect when given
2 mins before | 1++ | | | 28 days post 40 weeks gestational age Sucrose for analgesia in newborn infants | (1616 infants) 9 evaluated preterm infants 11 term 1 both | inconsistency in the dose of sucrose that was effective (dose range of 0.012 g to 0.12 g), and therefore an optimal dose to be used in preterm and/or term infants could not be identified. The use of repeated administrations of sucrose in neonates needs to be investigated as does the use of sucrose in combination with other behavioural (e.g., facilitated tucking, kangaroo care) and pharmacologic (e.g., morphine, fentanyl) interventions. Use of sucrose in neonates who are of very low birth weight, unstable and/or ventilated also needs to be addressed. | painful stimulus | | | |------------------------|--|---|---|------------------|-----|--| | Liossi et al
(2006) | RCT Pediatric cancer patients requiring LP 45 children age 6 – 16 years | LP with 1. Local anaesthetic (LA) 2. LA + hypnosis 3. LA+ attention | LA + hypnosis group had less
anticipatory anxiety and less
procedure related pain and
anxiety | | 1++ | | INTERVENTION: Chest Drain Insertion/ Removal | AUTHOR | DESIGN | TREATMENT | OUTCOME
MEASURE | RESULT & CONCLUSION | SIDE-EFFECT/
SECONDARY
OUTCOME &
CONCLUSION | EVIDENCE LEVEL / COMMENTS | |----------------------|-------------------------------------|---|---|---|--|---| | Rosen et al (2000) |
RCT
n=120
children | 0.1mg/Kg (10mg max) IV
morphine v EMLA for CT
removal
EMLA on for 3hrs | pain assessed
by observer
using visual
analogue scale
10cm | Before removal pain scores lower in morphine group. During procedure no difference between morphine (7.16) and EMLA (7.4) groups. Scores during procedure mod to severe pain. | no adverse events. | 1+ | | Valenzuela
(1999) | double blind RCT
adults
n=100 | 0.1mg/Kg (10mg max) IV morphine v EMLA for CT removal EMLA on for 3 hrs | Increase in pain from before to during CT removal Assessed by observer looking at pain behaviour VAS 10cm | No differences between the groups pre(morphine 0.4 EMLA 0.9) and post procedure Increase in pain during procedure less in EMLA (4.4 v 6.0 for morphine) group Conclude EMLA cream more effective than IV morphine in relieving pain of CT removal | | 1- 48 dropouts – no details. Implied that CT removed without observer present fewer patients able to complete questionnaire in morphine group | | Bruce et al (2006a) | 1 and 2
observational
studies
children
study 3 pilot RCT
children n=14 | prevalence and clinical characteristics of pain and analgesic practices during CTR. N=135 efficacy and safety entonox for CTR. N=30 IV morphine versus entonox for CTR | Pain | 1. prevalence mod to severe pain 76%. Morphine commonest used analgesic, varying dose. 2. Entonox safe still had pain despite also having morphine and/or diclofenac 3. no differences between morphine or entonox. Children still had pain. | | Studies 1 and 2 grade 3. Study 3 grade 1- (score 3), only pilot study. May not have been big enough to show difference | |--------------------------|---|--|--|--|--|--| | Akrofi et al (2005) | RCT
Adults
Post cardiac
surgery
N=66 | 0.1mg/KgIV morphine v
20ml 0.5% bupivicaine
infiltrated subcutaneously
v inhaled entonox for
CTR | Pain measured
on VAS 100mm | Morphine or entonox alone unlikely to provide adequate analgesia. Pain scores: bupivicaine 9.5mm, entonox 37mm, morphine 15mm. Bupivicaine and morphine produce lower pain scores. | No differences in BP, heart rate, PaCO2, oxygenation or sedation | Pain scores low compared to other studies. All groups also had background | | Puntillo et
al (2004) | RCT
Adults post
cardiac surgery.
N=74 | 4mg IV Morphine + procedural information v 30mg IV keterolac + procedural information v 4mg Iv morphine + procedural and sensory info v 30mg IV keterolac + procedural and sensory info. For CTR. | Pain intensity
and distress
before and
straight after
CTR. | No difference between groups. Pain level low in all groups. Either opiod or NSAID can successfully reduce pain during CTR if used correctly i.e big enough dose and given time to work. | No differences in sedation | morphine. 1+ mean pain intensity score 3.26, Pain distress score 2.98. These are low. | | Bruce et al (2006b) | Literature review 14 studies 5 descriptive 3 non- pharmological intervention 6 RCT (includes Rosen and Valenzuela) of morphine ,LA and entonox only 2 involved children. | drain removal. Type and dose at behaviour, found displayed r painful. Non-pharmacological intervent Relaxation technique v normal analgesia as well mainly opiate Analgesic interventions: 3 more EMLA (1 adult, 1 children) – EN placebo - no difference both g significantly lower in this group entonox only more pain, entono Pain mild but studies only brief Chest drain removal painful pro analgesic studies showed paties | analgesia given not number of coping be ions: white noise, p care – no differences all experienced sohine v LA, morphi MLA group less pair roups significant part ions v 0.25% isoflurately reported. | ne v subfacial lidocaine – no differ
n. 1 LA (intrapleural bupivacaine v
in. Subgroup received IV keterola
s, entonox v entonox and 0.25% i
ne and 1% desflurane and 60% 0
macological interventions not help
od to severe pain despite strong a
tt. Inhalation agents, NSAIDS and | asure pain looked re frightening and no difference. tients given rence. 2 morphine voia chest drain) voc – pain soflurane – 2 – no difference. | 3 | |------------------------|--|---|---|--|--|----| | Taddio et
al (2006) | RCT.Double
blind.
132 neonates
(mean gestation
30.6 weeks) | Randomized to receive tetracaine, morphine or both for alleviating pain in ventilated neonates prior to central line insertion. Separate non randomised control group | Pain score during different phases of procedure – and observed effect of drugs on need for ventilatory supposrt and skin reactions | Morphine and Morphine + tetracaine groups lower pain scores than tetracaine alone. | Morphine infants
needed more
ventilatory
support, 30%
tetracaine
patients had skin
reactions | 1+ | | Horsley et al (2006) | Cohort study of adults with small bore chest drains using historical controls | | | Seldinger drains were well tolerated and effective method of draining pneumothoraces and uncomplicated efdusion | | 3 | ### **INTERVENTION**: NGT insertion | AUTHOR | DESIGN | TREATMENT | OUTCOME
MEASURE | RESULT & CONCLUSION | SIDE-EFFECT/
SECONDARY
OUTCOME &
CONCLUSION | EVIDENCE LEVEL / COMMENTS | |------------------------|--|--|--|--|--|--| | Wolfe et al
(2000) | double blind
RCT
adults
n=40 | atomized 4% lidocaine v saline to nasopharynx and oropharynx prior to NGT placement. all patients also received topical 2% lidocaine jelly intranasally. | Pain of NGT
placement
VAS 100mm | mean pain scores 37.4mm for lidocaine group and 64.5mm for placebo group. atomized 4% lidocaine results in clinically and statistically significant reductions in pain during NGT placement | | 1++ No children in this study | | Singer et al
(1999) | RCT
Adults
N=40 | Topical anaesthetics and vasoconstrictors v surgical lubricants alone for NGT insertion. 0.5% phenylephrine spray to nose followed by 5ml 2% lidocaine gel. Throats sprayed with 2% tetracaine and 14% benzocaine | Pain NGT insertion measured on VAS Nasal pain, gagging, Vomiting, choking and epistaxis | Experimental group significantly less pain, discomfort and gagging. No difference in adverse effects | Use of topical lidocaine and phenylephrine to nose and tetracaine and benzocaine to throat significantly reduces pain and discomfort NGT insertion. Recommend widespread use. | 1+ all adults ?children tolerate so much preparation | | Ozucelik
(2005) | RCT double
blind
Adults
N=100 | 10mg metoclopramide IV versus saline IV as placebo for NGT insertion | Pain, nausea
and discomfort
VAS | Initaial VAS scores similar. Consequent scores sig lower in metoclopramide group. | Mean VAS scores
for pain, nausea
and discomfort
significantly lower
following IV
metoclopramide | 1++ Score 4 need IV access. no children | | Cullen et al
(2004) | RCT double
blind
Adults
N=50 | Nebulized lidocaine (4ml
10%) versus neb saline | Discomfort
100mm VAS | Lidocaine group mean VAS scores 37.7mm. Saline group mean VAS scores 59.3mm. | No difference in difficulty of procedure | 1++
no children | |-------------------------
---|--|-------------------------------|--|--|---| | | | | | | Epistaxis occurred more frequently in lidocaine group 17% v 0%. Neb lidocaine decreases | | | Ducharme et | Double blind | Healthy volunteers had 3 | Pain of tube | No significant difference in | discomfort of NGT insertion 2% lidocaine gel | 1++ | | al (2003) | double dummy | NGT placed acting as own | insertion and | pain scores. | appeared to | | | | randomized
triple crossover
Adults | controls for 3 medications:
1.5ml 4% atomized lidocaine,
1.5ml atomized cocaine, 5ml | "global
discomfort" | "global discomfort" less with lidocaine gel (p=0.17) | provide best option. | statistically but not clinically significant. | | | N=30 | 2% lidocaine gel. | Which do participants prefer? | Participants preferred gel | | | | Stevens et al
(2004) | Sys Rev
(Cochrane)
RCT's in term
and preterm | 44 studies identified for inclusion in review | | Sucrose is safe and effective for reducing procedural pain from single painful events (heel lance, | Suggested
sucrose had
greater analgesic
effect when given | 1++ | | | infants – up to
28 days post 40 | 21 actually included (1616 infants) | | venepuncture). There was inconsistency in the dose of | 2 mins before painful stimulus | | | | weeks | , | | sucrose that was effective | ' | | | | gestational age | 9 evaluated preterm infants | | (dose range of 0.012 g to 0.12 | | | | | Sucrose for analgesia in | 11 term
1 both | | g), and therefore an optimal dose to be used in | | | | newborn infants | preterm and/or term infants could not be identified. The use of repeated administrations of sucrose in neonates needs to be investigated as does the use of sucrose in combination with other behavioural (e.g., facilitated tucking, kangaroo care) and pharmacologic (e.g., morphine, fentanyl) interventions. Use of sucrose in neonates who are of very low birth weight, unstable and/or ventilated also needs to be | |-----------------|---| |-----------------|---| ### **INTERVENTION**: Venepuncture and intravenous cannulation in older children | AUTHOR | DESIGN | TREATMENT | OUTCOME
MEASURE | RESULT & CONCLUSION | SIDE-EFFECT/
SECONDARY
OUTCOME &
CONCLUSION | EVIDENCE LEVEL / COMMENTS | |--------------------------|---|---|---|---|---|---------------------------| | Eidelman te
al (2005) | Systematic
review of
randomised
controlled trial
25 trials
identified – 2096
subjects | Compared the analgesic efficacy of topical anaesthetics for dermal instrumentation with conventional local anaesthesia. Also compared other LA agents to EMLA | | EMLA vs intradermal LA: no significant difference but EMLA advantageous because less painful to apply EMLA compared with tetracaine, liposome encapsulated tetracaine and liposome encapsulated lidocaine (ELA Max) | Liposomal
lidocaine in the
US is less
expensive than
EMLA and has a
more rapid onset
of action | 1++ | | Koh et al
(2004) | RCT
8-17 years
n=60 | Comparison of 2 different topical anaesthetics: EMLA vs new ELA-Max | Children rated pain using visual analog scale. Anaesthetist rated presence of blanching and difficulty in siting iv | 30 min application of ELA-Max as effective as 60 min application of EMLA. No difference in ease of venous access but less blanching with ELA-Max | ELA Max contains no prilocaine so that the theoretical problems of methaemoglobina emia (not in practice a problem) – not a problem | 1+ | | Luhmann et
al (2004) | RCT
4-17 years
n=69 | Comparison of ELA-Max with 0.1-0.2ml sub cut buffered lidocaine in peripheral intravenous catheter placement | Self reported visual analog scale questionnaires for patients and parents, nurse and blinded observer | No difference between
buffered lidocaine and ELA-
Max in termsof pain, anxiety,
technical difficulty | | 1+ | | Hee et al
(2003) | RCT
8-15 years
n=120 | Day surgery patients needing iv's: Gp1:EMLA+air/O2 GP2:50%N2O/50%O2 Gp3:Emla +N2O | Childrens Hospital of E Ontario pain scale by observer, VAS by patien. Heart rate, O2 sats, ease of cannulation | EMLA and 50% nitrous oxide equally effective for pain reduction whilst combination provides superior analgesia and satisfaction | No difference in time or ease of cannulation | 1- | |------------------------|---------------------------------------|--|---|---|---|----| | Andrew et al (2002) | RCT
5-15 years
n=80 | Day surgery patients EMLA cream on each hand After removal and 10 mins prior to cannula, application of Glyceryl Trinitrate (GTN) ointment or placebo (each child their own control) | Hand with visually best quality vein selected and cannulated – primary outcome was which hand was selected | GTN hand was chosen in 70% of children suggesting that GTN cream may aid in cannula placement | | 1- | | Taddio et al
(2005) | RCT
1 month – 17
years
n=142 | Liposomal lidocaine or placebo prior to cannulation | Children<5 years pain evaluated by parents and research assistant(Face Pain Scale0 Over 5 years included child | Liposomal lidocaine associates with higher intravenous cannulation success rate | less pain ,
shorter procedure
time and minor
dermal changes
with liposomal
lidocaine | 1+ | | Ekbom et al (2005) | RCT
6-18 years
n=70 (50 with
difficult venous
access)
20 who very
anxious | All had EMLA Randomized to N2O (NO) or conventional treatment | No of attempts
at cannulation
Time required
for procedure
Pain (VAS)
Satisfaction
score – parents,
children and
nurse | Highly significant results in both anxious children and difficult access children being easier and less painful in N2O group | Children held their own mask. Only suitable therefore over 6. Only tested very fit children (American Soc of Anaes – grade1). No problems – suggested gr 2 would also do well | 1- | |--------------------------|---|--|---|---|--|-----| | Kleiber et al
(2001) | RCT
Pre school
children
44 | Iv catheters placed for tests Parents received distraction education vs standard care | Observation of child and parent | No group differences in reports of behavioural distress. Parents who had been taught distraction were more likely to use it | | 1- | | MacLaren et
al (2005) | RCT
1-7 years
n=88 | Gp1: interactive toy distraction Gp2: passive movie distraction Gp3: standard care | Parent, nurse,
child over 4 self
report;
observational
coding | Children in the passive condition were more distracted and less distressed than those either with interactive toy distraction of standard care – there were no differences between these groups (this was watching a movie rather than playing with an interactive toy) | Suggests a passive strategy is
more effective method of distracting children than an active one – suggests children's distress interfered with their ability to engage with the distractor | 1- | | Uman et al
(2006) | Cochrane
review:
Psychological
interventions for
needle related | 28 trials with 1951 participants age 2- 19 years. Only used RCT's with at least 5 participants in each arm comparing a | | Largest effect sizes seen for treatment improvement over control exist for distraction, hypnosis, combined cognitive – behavioural interactions. | Health professionals should be aware of the value of incorporating | 1++ | | procedural pa | ain psychological intervention | | psychological | | |---------------|--------------------------------|--|-------------------|---| | and distress | in group with a control or | | strategies for | | | children and | comparison group were | | procedural pain | ļ | | adolescents | eligible. | | and distress into | | | | | | practice with | | | | | | children | | | Fanurik et al
(2000) | RCT
2-26 years in
age blocks 2-
4,5-8,9-12,13-16
n=160 | Iv insertion in OP pre
endoscopy
All had EMLA
Randomised to 'distraction'
or 'usual coping strategy' | Pain ratings
Behavioural
distress ratings | Pain ratings not influenced by distraction but children's behavioural distress lower for older children and those who were provided distraction | | 1- | |------------------------------------|--|--|---|---|---|---------------------| | Kolk et al
(2000) | RCT
3-8 years
n=31 | Children with local anaesthetic were randomly assigned to a have preparation before the Venepuncture or not | Groniger
Distress Scale | Prepared children showed significantly less distress than those who had not been prepared | | 1-
(small study) | | McErlean et al (2003). | RCT
9months to 6
years
n=46 | Midazolam syrup pre placement of | Parents and observers rated childrens pain scores | Median parents pain scores less in miazolam rather than placebo group (p=0.002) Observers scores not significantly different | No adverse
effects in this
small study | 1- | | Kanagasund
aram et al
(2001) | Cohort study Observational 90 children requiring repeated painful procedures | Gave between 50 and 70% NO to children between 1 and 11 years. Used OBSD-R scores during timed phases pre, during and post procedure | OBSD-R score | Increased level of distress
during admin of NO – but this
is less in children more than 6
years suggesting that those
who can understand the
procedure will benefit most | Children having dressing changes had higher scores than those having shorter procedures | 2- | | Costello et al (2006) | RCT
127 children
between 9 and | 37 had ethyl vinyl chloride vapocoolant spray 48 received isopropyl alcohol | Used children's
VAS score | No difference between groups | 1+ | |--------------------------------|--|---|---|------------------------------|----| | | 18 years requiring | (placebo) spray 42 no pre-treatment | | | | | | intravenous
cannulation | 12 no pro a camiona | | | | | Davies and
Molloy
(2006) | RCT 77 children requiring venepuncture for assessment of GFR. Age 5 – 13 vears | Compared ethyl chloride spray pre venepuncture with ametop | Childs preferred choice for third venepuncture having had one of each. Pain not assessed. | Equal preference | 1- | ## **INTERVENTION**: Immunisation and IM injection | AUTHOR | DESIGN | TREATMENT | OUTCOME
MEASURE | RESULT & CONCLUSION | SIDE-EFFECT/
SECONDARY
OUTCOME &
CONCLUSION | EVIDENCE LEVEL / COMMENTS | |---------------------------|--|---|--|--|--|--| | Scheifele et
al (2005) | RCT
4 – 5.5 years
n=288 | Compared local reactions at 48 hours and daily parental pain reports after 2 different diptheria-tetanus- pertussis vaccine booster doses at 4 – 6 years. The standard (DtaP) vaccine was compared with a vaccine containing a lower diptheria and pertussis doses (Tdap) | Daily parental pain reports. Assessment of degree of redness and swelling by nurse observer at 48 hours. Serological response pre and 4 weeks post vaccine | Less redness and swelling in the Tdap group at 48 hours. (p=0.004)Children with large reactions more likely to have higher levels of pre immunization ab levels. BOOSTER RESPONSES TO Tdap were reduced with the smaller antigen doses but generally satisfactory. | (No IPV in Tda | 1++ | | Wood et al
(2004) | Multi centre
survey
4-6 years olds
28
paediatricians
enrolled 620
children | Compared children pain scores post either 'Priorix' MMR vaccine of 'RORVax' MMR vaccine in children receiving their 2 nd routine MMR vaccine. Children used a standardised 'faces pain scale' | Parents and childrens reports over 4 days post vaccination | Priorix less painful that RORVax (p<0.001) This persisted over 4 days | | 1-
if all else equal ,
choice of vaccine
influences degree
of pain | | Ipp et al
(2004) | RCT
Age = 12
months
N=49 | Random allocation to receive 'Priorix' or MMR-II . | Pain responses recorded before and 15 secs after immunization by parent and paediatrician,. Also recorded whether cried | Paediatrician (p=0.001)and parents (p=0.007) both scored pain scores significantly less for Priorix than for MMRII | | 1++ | | | | | and length of cry | | | | |------------------------|--|---|---|--|--|-----| | lpp et al
(2006) | RCT
Double blind
4-6 years
60 children | Participants received either Priorix® or M-M-RII® | Children self
reported
'Oucher ' scale.
Parents and
paediatricians
completed VAS
scores | MMRII group had higher median pain scores, crying and paediatrician reported pain | | 1+ | | Diggle et al
(2006) | RCT
696 infants
2,3,4 months of
age | Random allocation to immunisation with 23/25 mm needle, or 25 gauge 16mm needle; or 25 gauge 25 mm | Parental records
of local and
general
reactions 6
hours post and
3 following days.
Antibody
response | No difference in antibody response Long needles reduce vaccine reactogenicity without compromising immunogenicity | | 1+ | | Uman et al
(2006) | Cochrane review: Psychological interventions for needle related procedural pain and distress in children and adolescents | 28 trials with 1951 participants age 2- 19 years. Only used RCT's with at least 5 participants in each arm comparing a psychological intervention group with a control or comparison group were eligible. | • | Largest effect sizes seen for treatment improvement over control exist for distraction, hypnosis, combined cognitive – behavioural interactions. | Health professionals should be aware of the value of incorporating psychological strategies for procedural pain and distress into practice with children | 1++ | | Albertsen et al (2005) | RCT 12 children with ALL 17 treatment courses evaluated | Children receiving asparaginase. 4 different combinations: 2 where asparaginase dissolved in lidocaine and 2 in water | Pain intensity (Pain Visual Analog Scale, VAS score) and drug pharmokinetics evaluated | Pain scores showed significantly less pain if asparaginase dissolved in lidocaine (p<0.0001) | Did not affect
bioavailability or
absorbtion rate of
the enzyme | 1+ | |------------------------|--
---|---|--|--|----| | Amir et al
(1998) | RCT Children receiving 2 doses of im benzathine penicillin for secondary prophylaxis of rheumatic fever 1 month apart N=18 | 2 groups: 1: benzathine penicillin diluted with sterile water, followed 1 month later with penicillin diluted with lidocaine 2: same regime in reverse order | Serum penicillin concentrations after each injection | Pain score significantly lower after lidocaine(? significance level) | No difference in
serum penicillin
levels | 1- | | Reis et al (2003) | RCT Infants receiving their routine 2 month immunizations (4 injections) N= 116 | Intervention group: received sucrose, oral tactile stimulation with a pacifier or bottle, and were held by their parents during immunization. Control group did not receive these interventions (standard practice) | Blinded assessment of audiotaped crying, heart rate, parent preference for further use of injection technique, nurse rated ease of vaccine administration | Combining sucrose, oral tactile stimulation and parental holding was associated with significantly reduced crying (p=0.002).Parent preference for the intervention :p<0.001 (NB this part of the study not blinded) | Nurse rated ease of vaccine administration equivalent for both groups | 1- | | Lewindon et
al (1998) | RCT
2,4, 6 months
107 infants | Received either 2ml 75% sucrose or 2 ml water pre immunisation | Duration of infant crying Infant distress assessed by visual analogue scale (Oucher) | Sucrose reduced infant crying time Mean duration of first cry reduced from 42 – 29 seconds. | | 1 - | |--------------------------|---------------------------------------|--|--|--|---|-----| | O'Brien et al (2004) | RCT
1 year old
infants
n=120 | 1g amethocaine or placebo
30 mins before vaccination | Pain assessed
by Modified
Behavioural
Pain Scale | 4 %amethocaine reduces pain of immunisation (p = 0.29). Amethocaine produced local(non serious) side effects | No difference in immunization success. Needed applying 30 mins pre immunisation | 1++ | | Taddio et al
(1994) | RCT
0-1 years
n=96 | 2.5 gm EMLA or placebo applied 60 minutes pre immunisation | Modified Behavioural Pain Scale and duration of infants cry | Time to cry longer with EMLA:
p=0.0004 Total crying time shorter with
EMLA: p = 0.027 | EMLA group had
more local skin
reactions
P<0.0001 | !+ | | Lewkowski
et al (2003) | RCT 9-11 years during immunisation 7-12 years during venepuncture | Compared: sweetened chewing gum Unsweetened chewing gum Sweet taste control | Ratings of pain intensity (not specified) | Variable correlation. Peer response may have affected girls ratings | | 2- | |---------------------------|---|--|--|---|---|----| | Cohen et al
(2002a) | Controlled trial
3-7 years
n=61 | Compared procedural coping and stress behaviour in group of children trained in these skills compared to group who had not | Observation of children's ability to cope with immunization pain | Children understood coping skills but did not use them. | Observation
showed that
parents behaviour
tended to comfort
child distress,
whearas nurse
behaviour
encouraged child
coping | 2 | | Cohen
(2002b) | RCT
Infants receiving
immunization
N=90 | Compared nurse directed distraction to standard care during immunization (not blinded) | Observational scale Parent and nurse ratings Heart rate | Infants engaged in distraction and distraction reduced behavioural distress (? Significance level) Difference between ratings and heart rate inconclusive | Infants exhibited elevated stress prior to and during injection but this seemed to be fleeting | 1- | | Sparks et al
(2001) | RCT
4 – 6 years
n=105 | Children needing DPT immunization.Randomly assigned to receive: Touch Bubble blowing Standard care | Child medical
fear scale prior
to injection.
Pain of injection
using Oucher
scale | Both forms of distraction significantly reduced pain perception. Fear not a significant covariate but distraction effective when fear was not constant | 1+ | |-------------------------|--|--|--|--|----| | Cohen et al
(1999) | RCT
10 year olds(4 th graders)
n=39 having 3
immunizations
over a 6 month
period | Compared distraction, EMLA, , typical care during immunization | Child and Adult
medical
Procedures
Interaction | All children low distress despite moderate anxiety or pain. Distraction more child coping, less child distress. No difference in participant rating and heart rate with all treatments | 2 | | Jackson et al
(2006) | RCT
372 children,
age 4 years,
having 4 th DtaP
vaccine | Compared pre and ongoing treatment with either acataminophen(paracetamol) or ibuprofen or placebo to see if the local reaction could be modified | Size of local reaction to vaccine | No change between groups | 1+ | | Mark et al
(1999) | RCT
10 year old
n=252 | Compared DT vaccine given subcutaneously or intramuscularly in upper arm | Observed redness, itching, swelling, pain over 2 week period. Serology to look for ab levels | IM injection significantly less redness, swelling or pain. No difference in antibody responses. | Girls had lower
response to
diphtheria toxoid
than boys | 1+ | |--------------------------------|--|--|---|--|--|----| | Sweet and
McGraph
(1999) | Observational
study
Infants at 6 or
18 months
N=60 | Video recorded immunizations to see how different patterns of maternal and staff behaviour influenced prediction of pain | Neonatal Facial Action Coding System Child Adult Medical procedure Interaction scale | 'Reassurance' ('mother's distress promoting behavior') predicted increased infant pain behaviour, whilst 'distraction' ('staff coping promoting behaviour' predicted decreased infant pain behaviour | | 3 | | Cohen Reis
et al (1997) | RCT
School age
children: 4 –
6years
N=62 | Immunization in following groups: Gp!: EMLA+distraction Gp2:Vapocoolant spray + distraction Gp 3 distraction | Videotape: cry
duration
Pain Behaviours
as measured by
Observational
scale of
Behavioural
distress | EMLA and spray both significantly and equally better than control Children preferred vapocoolant | Vapocoolant
much cheaper
than EMLA | 1+ | | Lindh et al
(2003) | RCT
3 months
n=90 | Children receiving immunization EMLA + glucose Or placebo | ECG Video – modified behavioural pain scales (MBPS) Latent of first cry total crying time | ECG – transient heart rate slowing followed by acceleration significantly more in placebo group Cry and MBPS scores significantly less in EMLA+glucose group | 1+ | |-------------------------|-----------------------------------|---|---|--|----| | Cassidy et al (2001) | RCT
4-6 years
n=161 | Routine immunization
EMLA patch vs placebo | Childs self report on a Faces Pain scale Child Facial Coding system
Children's Hospital of E Ontario pain scale Parent and Technician ratings | EMLA patch group had significantly less pain on all 4 measures compared with placebo (17% vs 43 % in placebo group) | 1+ | | Cohen et al
(2006) | RCT
136 infants
1-24 months | Routine immunization Parents received coaching in distraction (watching 'Sesame Street' or 'Teletubbies' video versus standard care | MAISD (Measure of Adult and Infant Soothing and Distress) Parents and nurse rating using VAS | MAISD: infants in distraction group significantly less distress than control (p<0.05) No difference in parent and nurse report | 1- | | Jackson et al
(2006) | RCT
Blind
372 children | Routine immunization with 5 th Dtap vaccine – compared pre treatment with paracetamol, ibuprofen or placebo | Local reaction
with area of
redness or limb
swelling 48 post
vaccination | No difference between groups | | INTERVENTION: Laceration repair | AUTHOR | DESIGN | TREATMENT | OUTCOME
MEASURE | RESULT & CONCLUSION | SIDE-EFFECT/
SECONDARY
OUTCOME &
CONCLUSION | EVIDENCE LEVEL / COMMENTS | |-------------------------|---|--|--|--|--|---| | Farion et al
(2003) | Systematic
review.
8 papers.
Adults and
children. | Tissue adhesives v standard wound closure. Acute, linear, low tension wounds. | Cosmesis
Pain
Procedure time | No difference in cosmesis.
TAs less pain and quicker. | TAs slight increased risk of dehiscence. | 1++ Same author and data as Cochrane review 2001. CD003326. | | Barnett et al
(1998) | RCT
Children> 4yrs
N=163 | Glue versus sutures for repair linear lacerations ,5cm, ,12hrs old not involving eyelids or mucous membranes | Cosmetic
outcome at 3
and 12 months | Cosmetic outcome the same. | Length time – glue group faster. Pain – doctors, nurses and parents but not children rated glue as less distressing | 1- | | Zempsky et
al (2004) | RCT
Ages 1-18
N=100 | Steristrip versus dermabond for facial lacerations | Cosmesis at 2 months Pain. | No difference in cosmesis or pain scores | More dehiscence in dermabond group Equivalent techniques. Steri strips cheaper | 1+ | | Hock et al
(2002) | RCT
Children 1-18
N=189 | HAT v sutures | Procedure time Wound healing Scarring Pain Complications | HAT quicker, less scarring,
pain and complications, trend
towards better healing | HAT equally acceptable and perhaps superior to standard suturing | 1+
score 3
not blinded | | Eidelman et
al (2004) | Systematic review. 22 trials | Topical v infiltrated anesthesia | Efficacy
Cost
?need for
cocaine | Topical as good or better analgesia than infiltrated anesthesia. Cocaine containing products costly and use not justified as equivalent efficacy | | 1++
scored studies
using same scoring
system as APA. | |--------------------------|---|--|---|---|---|---| | Ernst et al
(1997) | RCT
N=66
Only 13 were
children (5-
17yrs) | LAT v injected buffered lidocaine | Pain application
or injection
Analgesic
efficacy | LAT less painful than injection. Equal efficacy. Trend towards LAT working better on scalp and face lacerations cf extremities | LAT gel compares
favourably with
injected lidocaine
interms of
anesthesia and
considerably less
painful to apply. | 1+ | | White et al (2004) | Prospective case series. N=67 Ages 5-18 | Lat for repair simple finger lacerations | LAT success/failure | 53.7% success rate. Better anesthesia on dorsal than ventral surface. | No digital ischaemia. Safe and effective | 3 | | Smith et al
(1998) | RCT
N=90
>1 year | Tetralidophen v lidocaine infiltration in repair mucous membranes. | Pain | Suture technician, research assistant and video reviewer scored lidocaine infiltration better. Patients and parents no significant difference in scores | Infiltrated lidocaine better but differences in pain scores were small and may not be clinically significant. Also pain of injection not taken into account | 1- | | Singer et al
(2001) | RCT double
blind
Age 1-59 years
N=60 | Pretreat lacerations with either LET or Emla | Adequacy of anesthesia to needlestick. Pain of infiltration of lidocaine. | LET better at anesthesia to needlestick. No difference between the two in decreasing pain of infiltration. | Pretreatment with LET or EMLA results in similar amounts of pain of subsequent lidocaine infiltration. LET cheaper and not contraindicated in open wounds. | 1++ 2/3 patients <18yrs | |-------------------------|---|---|--|---|--|-------------------------| | Singer et al
(2000) | Double blind
RCT
N=43
Ages >1 year
mean age 13yrs | Pretreatment with LET V placebo | Adequacey of anaesthesia to needlestick. Pain of infiltration of lidocaine. | LET group better anaesthesia
to needlestick and significantly
less pain on infiltration of
lidocaine | Pre-treatment with topical LET significantly reduces pain of subsequent lidocaine injection | 1++ | | Stewart et al (1998) | Double blind
RCT
N=100
Ages 5-16 years | Aqueous 1% lidocaine or saline soaked pad applied to wound 10 min prior to infiltration of lidocaine. | Pain response from patient and parent | No difference | Topical lidocaine ineffective at relieving pain of injection. | 1++ | | Luhmann et
al (2001) | RCT
Ages 2-6 years
N=204 | Standard care (topical +/- infiltrated anesthesia) v standard + N ₂ O v standard + oral midazolam v standard + N ₂ O and midazolam | Distress during procedure scored by observer (OSBD-R) | Groups that received N ₂ O had lower distress scores. Groups that received midazolam had more adverse events and longer recovery times. | Regimens including N ₂ O more effective at reducing distress during suturing of facial lacerations in 2-6 year olds | 1+ | | Burton et al
(1998) | Double blind
RCT
N=30
Ages 2-7 years | 50% NO/ 50% oxygen versus
100% oxygen for laceration
repair. | Change in Pain
(CHEOPS) and
anxiety scores
before and
during laceration
repair | Pain and anxiety scores went up in control group and down in NO group. | NO/oxygen mix
significant
decrease in
anxiety during
laceration repair | 1+ | |--------------------------|---|---|---|---|--|-----| | Davies et al
(2003) | Systematic
review.
63 publications.
22 RCTs | Buffering local anaesthetic with sodium bicarbonate | Pain of infiltration | Buffering significantly reduces pain of LA injection | Buffering significantly reduces pain of injection. Particularly useful for large or sensitive areas and in children. | 1++ | | Bar-Meir et
al (2006) | Observational
study
60 patients
between 1 and
16 years
requiring
suturing | 15 received standard care
and 45 had nitrous oxide in
addition to lidocaine
infiltration | Pain scores
evaluated by
surgeon and
nurse at end of
procedure using
FLACC scale | FLACC scores lower in nitrous oxide group | .3% of children
had mild side
effects – mostly
nausea and
vomiting | 2- | | Sinha et al
(2006) | 240 children
between 6 and
18 years
requiring
suturing | Age appropriate distractors or a control group | Facial Pain
scale
State trait
anxiety
inventory in over
10 year olds | Nodifference in facial pain
scores in children less than 10
although parents perceived
less distress. Older children
had reduced situational anxiety
but not pain intensity or
parents perception of pain
distress | Older children
may benefit from
distraction in
terms of anxiety
but need further
pain management | 1 - | | Das et al (2005) | RCT 7 children acted as own controls. 11 episodes studied ages 5-18 | Playing a vitual reality
game
+ analgesia versus analgesia
alone during burn dressing
changes | Pain during removal and application of dressing. Parent and nurses view of child's anxiety and perception of pain. | VR significantly reduced pain during dressing change – by at least 2 on FACES scale. Parents and nurses agreed VR reduced anxiety and pain. | No side effects | Small study Some children studied more than once. | |-----------------------------------|---|--|---|---|-----------------|--| | Fratianne et al (2001) | RCT crossover
N=25
Ages 7+ | Music therapy versus no music therapy during dressing changes | Patients perception pain and anxiety. Nurses observation of patient's tension | Significant reduction in self-
reporting of pain in those who
received music therapy.
Biggest difference at beginning
and end of treatment. During
debridement less effective. | | not blinded. Need therapist present. | | Hernadez-
Reif et al
(2001) | RCT
n=24
age – mean 2.5
years | Massage therapy versus no massage therapy in addition to standard care during dressing changes. | Observers perception of distress behaviours (CHEOPS) Nurses perception of ease in completing procedure | Massage therapy group
showed less distress (facial
grimacing, torso movement,
crying, leg movement and
reaching out)
Nurses reported easier to
complete dressing | | 1+
Massage 15min
prior to dressing
change. | | Robert et al
(2003) | RCT double
blind reverse
crossover.
N=8 | Oral Morphine versus
transmucosal fetanyl citrate
during tubbing | Pain (FACES
scale) and
anxiety (FEAR
Thermometer) | Pain and anxiety better managed with fetanyl | | no details
randomization or
double blinding.
Small study. | | | Age 5 -/+ 2 | | | | | | |------------------------|---|---|--|---|---|-------------------------------| | Borland et al (2005) | RCT double
blind crossover
N=24
Median age 4.5
years (max 15
years) | Oral morphine versus intranasal fetanyl | Pain scores | No significant difference in pain scores | Time to resumption normal activities. No significant difference. Fewer side effects with INF. INF suitable analgesic | 1++ no details randomization. | | Sharar et al
(1998) | RCT double
blind crossover
N=14
Ages 4-17 years | Transmucosal fetanyl versusoral hydromorphone for wound care | Patient pain scores. Observer scores for co-operation, anxiety and sedation. | Fetanyl improved pain and anxiety scores during wound care. | No significant difference in vital signs, n&v, pulse oximetry, sedation, cooperation or time to normal activites. Fetanyl safe and effective. Minor improvements in analgesia and anxiolysis. | 1+ | | Sharar et al
(2002) | Double blind
RCT placebo
controlled | Oral transmucosal fetanyl citrate versus oral oxycodone for outpatient wound care | Patient pain scores. Observer scores | No significant differences | No significant side effects.OTFC and oral oxycodone | 1+ | | | N= 22
Ages 5-14 years | procedures. | for cooperation, anxiety and sedation. | | safe and effective
in outpatient
setting. Fetanyl
improved
palatability | no details randomization. Dropouts not discussed. | |--------------------------|--|--|--|--|--|---| | Heinrich et al
(2004) | Case Series
N=47 dressing
changes (30
children) | PR S(+)-ketamine and midazolam for dressing changes in outpatient setting. | Pain
Patient
satisfaction | 94% adequate sedation and analgesia Return to normal after 30 min All children had anterograde amnesia No complications | Conscious
sedation with
rectal S(+)
ketamine and
midazolam safe
and effective | 3 sedation | ## **INTERVENTION**: Bladder catherisation older children | AUTHOR | DESIGN | TREATMENT | OUTCOME
MEASURE | RESULT & CONCLUSION | SIDE-EFFECT/
SECONDARY
OUTCOME &
CONCLUSION | EVIDENCE LEVEL / COMMENTS | |--------------------------|--|---|--|--|--|---------------------------| | Rogers et al
(2006) | RCT
80 infants less
than 90 days. | Infants less than 90 days requiring bladder catheterisation in the Emergency department randomised to 24 % sucrose or placebo immediately before the procedure. | Pain scores,
presence of cry,
time to return to
baseline | Overall, no effect of sucrose seen on pain scores between the two groups. | Subgroup analysis of the patients less than 30 days suggested that the sucrose group had less pain | 1+ | | Phillips et al
(1998) | 35 children
undergoing
MCUG
Cohort study | Parents given different ways of explaining MCUG to their child – either story booklet or story booklet and play. | Child's reaction to investigation assessed by using Gronigen Distress Rating Scale and parents coping style associated with Utrecht Coping list. | Parents giving truthful explanation reported considerably less distress than those whose parents had avoided upsetting details | · | 2- | | Vaughan et
al (2005) | RCT
Double blind
2 years or less
115 patients | 2% lidocaine gel versus non
anaethetic lubricant applied
to both genital mucosa and
catheter
(not applied directly to penile
urethra) | FLACC scale – pain measured before, during and after catheterisation | Both groups had increase in pain scores. Anesthetic gel did not show significant difference | ? would it have
made a difference
if applied directly
to penile urethra) | 1- | | Butler et al
(2005) | RCT not blinded
46 children II of
whom had had a
previous MCUG
and had found
this distressing | Children offered routine care (play visualization, breathing exercises) versus hypnosis. Children seen by researcher on day before procedure then had a 1 hour training session in imaginative self hypnosis which they then practised. Therapist also present when child undergoing MCUG | Child and parental reports of distress compared with previous one, observers ratings of distress, medical staff reports of the difficulty of the procedure and total procedural | Significantly less distress in hypnosis group | | 1- | |------------------------|--|---|---|---|---|----| | Kozer et al
(2006) | 58 infants less
than 2 months
old, and
requiring a urine
sample for
investigation of
fever | randomly assigned to an SPA (with EMLA) or bladder catheterisation with local anaesthetic gel | time Investigator blinded to the procedure scored videotapes of infant behaviour using DAN score. Also nurse and parent ranked infants pain | SPA more painful than TUC | Parent and nurse observation, duration of cry and success rate in obtaining urine | 1+ | | Uman et al | Cochrane | 28 trials with 1951 | Largest effect sizes seen for | Health | 1++ | |------------|-------------------|-------------------------------|---------------------------------|-------------------|-----| | (2006) | review: | participants age 2- 19 years. | treatment improvement over | professionals | | | | Psychological | Only used RCT's with at | control exist for | should be aware | | | | interventions for | least 5 participants in each | distraction, hypnosis, combined | of the value of | | | | needle related | arm comparing a | cognitive – behavioural | incorporating | | | | procedural pain |
psychological intervention | interactions . | psychological | | | | and distress in | group with a control or | | strategies for | | | | children and | comparison group were | | procedural pain | | | | adolescents | eligible. | | and distress into | | | | | _ | | practice with | | | | | | | children | | ## **Surgical Procedures** INTERVENTION: myringotomy | AUTHOR | DESIGN | TREATMENT | OUTCOME | RESULT | S-EFFECT / 2 ⁰
OUT. | EVIDENCE LEVEL / COMMENT | |------------------------------|---|--|--|---|---|--| | Bean-
Lijewski,
(1997) | DB RCT
6/12-9yrs
n=125 | Paracetamol 15mg/kg
Ketorolac 1mg/kg
Oral 30 mins preop | Obj Pain Scale
5, 10, 20mins | K pain score lwr 5 and 10 min only (both below extra treatment trigger); No diff at D/c or post D/c analgesia | No diff | 1+ | | Bennie
(1997) | DB RCT
>6/12
n=43 (13-16
each grp) | Paracetamol 15mg/kg
Ibuprofen 10mg/kg
Saline
Oral 30 mins preop | CHEOPS
5,10,15,30,45,
60 mins after
surgery | No diff in pain scores cf. placebo; no diff in rescue cf. placebo | No diff | 1-
Small sample | | Bolton
(2002) | Open label
(mainly
ph'kinetic study)
17-72 mths
n=30 | Paracetamol 40mg/kg oral 30 mins preop | CHEOPS
10,20,30 mins | 57% no further analgesia | | 2- | | Bennie
(1998) | DB RCT
>6/12
n=60 (15 each
grp) | Transnasal butorphanol 5, 15, or 25mcg/kg saline | CHEOPS
5,10,15,30,45,
60 mins after
surgery | 25mcg: lwr pain score, incr
time to analgesia; lwr doses no
diff from placebo | No diff in
vomiting; incr
sedation and time
to oral intake with
25mcg | 1-
small sample size | | Galinkin
(2000) | Randomised not
blinded
(mainly
ph'kinetic)
9/12-6yrs
n=265 | Intranasal fentanyl 2mcg/kg;
Saline;
ALL: paracetamol 10mg/kg | CHEOPS 5
then 15
minutely until
2hrs | Decr CHEOPS | Incr time to
discharge from
recovery; no diff
vomiting | 2+
Minor decr pain
score – not clin
significant | | Pappas
(2003) | RCT single
blinded
6/12-6yrs;
n=120 | Paracetamol 10mg/kg; Parac 10mg/kg + codeine 1mg/kg; Nasal butorphanol 25mcg/kg; IM ketorolac 1mg/kg | Obj pain score
(0-10) | Higher pain score in P and P+C cf. B and K; incr rescue in P; no diff in analgesia at home | Incr vomiting in P+C and B | 1-
statistical not
clinically significant
difference in pain
scores | |---------------------|--|--|--|--|---|---| | Tobias
(1995) | Rand ?blinded
6-60mths
n=50 | Paracetamol 15mg/kg; paracet 10mg/kg + codeine 1mg/kg; Oral 30mins preop | Observer pain scale (0-10) 5 and 30 mins | Decrease pain score P+C;
decr suppt analgesia | | 2+
Statistical but
minimal clinical
significant decr
score | | Watcha
(1992) | DB RCT
n=90 | Paracetamol 10mg/kg;
Ketorolac 1mg/kg;
Saline. Oral 30 mins preop | Obj pain scale | K: lwr pain score and less suppt analgesia; P no different from placebo | | 1- | | Tay (2002) | DB RCT
>1yr
n=63 | Paracetamol 15mg/kg;
Diclofenac 0.5mg/kg
[all fent 1mcg/kg] | CHEOPS | Pain scores low and no diff; 20-27% require rescue | | 1+
all received
fentanyl | | Ragg (1997) | DB RCT
1-12 yrs
n=95 | Paracetamol 20mg/kg; parac
12mg/kg + codeine 0.5mg/kg +
promethazine 0.65mg/kg | | Pain scores low and similar both grps | sedation and time
to oral intake
increase with
combination | 1+ | | Bhananker
(2006) | DB RCT (comp
gen.)
6mths-8yrs
n=124 (52/72) | Paracetamol 30mg/kg preop + saline ear drops vs placebo + 2%lignocaine ear drops | CHEOPS (0-
10) 5 minutely
in PACU;
Paracetamol
15mg/kg
rescue score
>6 - codeine if
no response;
parent VAS at
home at home,
going to bed,
next morning | Pain scores no diff; %requiring supplt analgesia no diff | | 1+ | | Derkay
(1998) | DB RCT
(?method)
Age: 4mths- | Paracetamol 10mg/kg;
Paracet 10mg/kg + codeine
1mg/kg; | Obj Pain score
0-10 arrival, 15
& 30 mins | Pain scores no diff in PACU
and 24hrs;
Suppt analgesia 24hrs: no diff | No facial nerve
palsy, 1/200
vertigo | 2+ | | | 18yrs
n=200 | Ibuprofen 10mg/kg;
Placebo (all preop)
ALL: 4% lignocaine | | | | |-------------------|-----------------------------|---|--|------------------------|----| | Lawhorn
(1996) | DB RCT
Children
N=122 | 4% lignocaine drops at end BSM | Decr pain score; decr % req. suppt paracetamol | No vertigo or tinnitus | 1- | INTERVENTION: tonsillectomy meta-analyses | AUTHOR | DESIGN | TREATMENT | OUTCOME | RESULT | COMMENTS | Gr | |--------------------|--------------------------------------|---|--|--|---|-----| | Cardwell
(2005) | Meta-analysis
Cochrane | NSAID and
tonsillectomy
13 trials, n=955
children | Bleeding
requiring
surgical
intervention | NSAIDs did not significantly alter no. of periop bleeding events needing surgery OR no. of bleeding events not requiring surgery | Bleeding req. surgery rare - large Cl (0.42-4.28) suggests need further studies Subgroup analysis ketorolac: no significant diff in bleeding | 1++ | | Marret
(2003) | Meta-analysis | NSAID and bleeding
Adult and paed
7 studies. Adult and
paed | Postop bleeding
No. reoperation | Bleeding incr 5.3 to 9.2% OR 1.8(0.9-3.4)
Reop incr 0.8 to 4.2%; OR 3.8(1.3-11.5)
NNH 29 | "NSAID should not be
used"
114/262 receiving NSAID
= ketorolac 1mg/kg | 1++ | | Krishna
(2001) | Meta-analysis | Aspirin vs NSAID
(ibuprofen &
diclofenac)
7 studies, Adult and
paed | Postop bleeding | aspirin OR 1.94 (1.09-3.42) significantly higher than NSAID OR 0.93(0.44-1.95) | limited literature review – mainly ENT journals | 1- | | Moiniche
(2003) | Quantitative
systematic
review | NSAID and
tonsillectomy
25 studies, NSAID
n=970, nonNSAID or
placebo n=833. Adult
and paed | Intraop blood
loss
Postop bleeding
Hospital
admission
Reoperation for
bleeding | Postoperative bleeding: ns Only reoperation happened significantly more often with NSAID OR: 1.12-4.83; NNH: 60(34-277) | "should be used cautiouslyfurther research needed rather than clinical recommendations" | 1++ | | Moiniche
(2003) | Quantitative
systematic
review | NSAID vs opioid
Adult and paed | PONV | Risk of emesis signif. decreased: 31.6% vs 48.8% RR 0.73 (0.63-0.85), NNT 9 | | 1++ | | Cardwell
(2005) | Meta-analysis
Cochrane | NSAID and
tonsillectomy
10 trials, n=837
children | PONV | Less nausea and vomiting when NSAID part of analgesic regime | | 1++ | | Steward
(2003) | Meta-analysis
Cochrane | Single intraop dose
dexamethasone and
post-tonsil morbidity;
Paed | PONV | Single intraop dose (0.15-1mg/kg; max dose 8-25mg) 2 times less likely to vomit; NNT 4 More likely soft/solid diet on day 1 (RR 1.69; 1.02-2.79) | Missing data and variant measurement tools – unable to assess effect on pain | 1++ | |--------------------|---|--|---|--|---|-----| | Moiniche
(2003) | Quantitative
systematic
review | NSAID vs placebo and
vs opioid
Adult and paed | Analgesia | NSAID vs placebo: 10/11 studies improved pain relief NSAID vs opioid: 8 studies: NSAID > opioid in 2; equianalgesic in 5; NSAID < opioid in 1 NSAID vs paracetamol: 3 studies: all no diff NSAID vs paracetamol & codeine: 3 studies: 1 each <,>,= | Opioids: morph 0.1-
0.2mg/kg; papaveretum
0.2-0.3mg/kg; pethidine
1mg/kg; tilidine 2.5mg/kg;
orqal tramadol 1mg/kg) | 1++ | | Hollis (2000) | Meta-analysis
Cochrane
6 trails | LA either injected
before or after removal
(5); spray after
removal (1) | Pain score
Supplemental
analgesia | No significant difference | Small no. of trials and small sample sizes | 1+ | | Hamunen
(2005)* | Systematic
review
36 studies
16/36 sensitive | Pain
after
tonsillectomy:
paracetamol, NSAIDs,
opioids. Age 1-16yrs | Analgesia | See summary and table below | Heterogeneity of data precluded meta-analysis | 1++ | **Summary Table from Hamunen, 2005*** | AUTHOR | STUDY ANALGESIC | ROUTINE ADDITIONAL ANALGESIC | MAIN RESULT | |------------------|---|------------------------------|---| | Bone (1988) | Diclofenac 2mg/kg PR vs. papaveretum 0.2mg/kg IM vs placebo | No | Decrease rescue analgesia with diclofenac | | Ozkose
(2000) | Tramadol 0.5mg/kg vs. tramadol 1mg/kg vs placebo | No | No difference in rescue analgesia or pain intensity | | Sutters (1995) | Ketorolac 1mg/kg IM vs. placebo | No | Ketorolac reduced rescue analgesia and pain intensity | | Watters
(1988) | Pethidine 1mg/kg IM vs diclofenac 1mg/kg IM vs control | No | Pethidine and diclofenac equal need for and time to rescue, and pain intensity | |----------------------|--|--|---| | Anderson
(1996) | Paracetamol 40mg/kg oral preop vs 40mg/kg PR at induction | No | Oral: less rescue morphine in PACU and lower pain scores | | Habre (1997) | Nalbuphine 0.1mg/kg IV vs. pethidine 1mg/kg IV | Paracetamol 15mg/kg po preop | Nalbuphine: higher pain scores and more rescue in PACU | | Mather (1995) | Paracetamol 20mg/kg po preop vs morphine 0.1mg/kg IV vs. paracetamol 20mg/kg preop + ketorolac 0.5mg/kg IM during | No | Paracetamol alone: more morphine compared to other groups | | Mendham
(1996) | Diclofenac 1mg/kg PR vs. diclofenac 1mg/kg PR + fentanyl 0.75mcg/kg IV vs. tenoxicam 0.4mg/kg IV vs. tenoxicam 0.4mg/kg IV | Paracetamol 15mg/kg qid
+ diclofenac 1mg/kg tds | Tenoxicam alone: higher pain score in PACU and more rescue cf. diclofenac alone | | Moore (1988) | Fentanyl 1mcg/kg vs. nil | Pethidine 1mg/kg IM preop | Fentanyl: pain score lower at 10 and 20 mins; less rescue analgesia | | Oztekin
(2002) | Diclofenac 1mg/kg PR vs nil | Remifentnil infusion,
morphine 50mcg/kg at
end + PCA postop
(bolus+4mcg/kg
background) | Diclofenac: lower pain score first hour, lower total morphine consumption | | Pendeville
(2000) | Tramadol 3mg/kg IV +2.5mg/kg po at 6hrs postop then tds vs. Propacetamol 30mg/kg IV + 15mg/kg 6hrs postop then tds | Sufentanil 0.25mcg/kg IV | Tramadol: lower pain scores (PACU, ward & home); less rescue | | Pickering
(2002) | Ibuprofen 5mg/kg po vs. rofecoxib 0.625mg/kg po vs. placebo (1/24 preop) | Paracetamol 20mg/kg po
1/24 preop + fentanyl
2mcg/kg IV | Ibuprofen: less early rescue. No diff in time to first rescue, pain score at 4/24, total analgesic consumption | | Romsing (1998) | Ketorolac 1mg/kg at induction vs. after surgery vs. placebo | Fentanyl 3mcg/kg IV,
paracetamol 20mg/kg | Preop ketorolac less rescue in PACU vs postop ketorolac. No difference in rescue during first 5/24 in ketorolac grps. No difference in paracetamol during 24/24 | | Sutherland (1998) | Tenoxicam 0.2mg/kg IM vs morphine 0.2mg/kg IM | No | Tenoxicam: increase rescue morphine | | Williams
(2002) | Codeine 1.5mg/kg IM vs morphine 0.15mg/kg IM | Diclofenac 1mg/kg PR | Codeine: more rescue during first 2 and 4 hrs; no difference in pain scores | INTERVENTION: tonsillectomy + systemic analgesia (post meta-analysis) | AUTHOR | DESIGN | TREATMENT | OUTCOME
MEASURE | RESULT & CONCLUSION | SIDE-EFFECT/
SECONDARY
OUTCOME &
CONCLUSION | EVIDENCE
LEVEL /
COMMENTS | |---------------------|--|---|--|--|--|---| | Antila (2006) | DB RCT (comp.
generated)
N=45
Age: 9-15yrs | T:tramadol 1mg/kg
bolus +6hr infusion
Ket: ketoprofen
2mg/kg bolus +
infusion
S: saline
ALL: fent 3mcg/kg | VAS during swallowing (0-100) at 30,60,90mins & 2,6,24hrs PCA fentanyl | Ket: lower pain scores first
6hrs; decr PCA reqt 0-6hrs
only; minor diff 24hr PCA
No diff between T and S | Ket: higher bld
loss intraop (vs
placebo, no diff cf.
T)
No diff PONV | 1-
statistical rather
than clinically
significant diff | | Hullett
(2006) | DB RCT
(?method)
N=66 (28/32)
Age: 1-8yrs | M: 0.1mg/kg morphine
T: 2mg/kg tramadol
ALL: oral paracetamol
30mg/kg; ondans;
dexameth | PMH (local) pain score 0-
10
Rescue | No diff pain scores or suppt
analgesic reqt | Only one pt PONV Minor decr in episodes of desat at 1-2hrs postop but not other times | OSA patients | | Alhashemi
(2006) | DB RCT
(computer rand.)
Age: 3-16 yrs
N=80 | IV paracetamol 15mg/kg + IM saline OR IM pethidine 1mg/kg + IV saline ALL: fentanyl 1mcg/kg | Obj Pain Score (0-10)
every 5 mins in PACU
until discharge (40 mins)
Rescue: morphine
50mcg/kg (OPS>5) | OPS not sign diff (ns): one point lwr in pethidine grp (~2/10 vs 3/10) Rescue (ns): 7/40 paracetamol; 0/40 pethidine | PONV (in PACU only): 3/40 both grps Ready for discharge: 15 vs 25 mins (paracet vs peth) | 1-
Inadequate
power for
difference in
pain score
Very short follow
up (40 mins) | | Ozalevli
(2005) | DB RCT
(consecutive
"rand.")
Age: 6-12yrs
N=60 | Postop PCA bolus M: 20mcg/kg morphine bolus (0.1mg/kg loading) T: 0.2mg/kg bolus (1mg/kg loading) | CHEOPS (0-10)
5,15,30mins and
1,2,4,6,24hrs | Pain scores: ns fist 60 mins; M:lower at 1,2 and 4hrs. PCA median dose M: 11.8mg(9.7-14); T:80mg(57-127) | Nausea score
higher with M at
4,6,24hrs;
nausea: T 3/30; M
11/30 | 1-
inappropriate
randomisation
method | | Keidan
(2004) | DB RCT
age 1.7-10yrs
n= 60
day case | K: ketorolac 1mg/kg
F: fentanyl 2mcg/kg
ALL: paracet 30mg/kg
PR; dexamethasone
1mg/kg (max 25mg);
ibuprofen 10mg/kg
postop | PONV: score 1=none to
4=multiple
Objective Pain Scale
every 30 mins until
discharge
Agitation postop; sleep
pattern at home
Parent at home: pain
none, moderate, severe | No diff in pain score K: increased agitation in recovery No diff in vomiting High incidence behavioural change and sleep disturbance at home | No bleeding any grp | very high dose
ketorolac; small
numbers no
difference | |---------------------------|--|---|---|--|--|---| | Sheeran
(2004) | DB RCT
Age >3 yrs
(mean 7 yrs)
N=45 (23/22) | R: rofecoxib 1mg/kg
oral (max 25mg)
P: placebo ALL: morphine
50mcg/kg; paracet
30mg/kg PR;
dexameth 0.5mg/kg;
ondansetron 0.1mg/kg | CHEOPS on arrival,
before rescue (morph
25mcg/kg), and every
30mins in PACU;
Wong-Baker faces on
discharge and at rest and
with swallowing (parent
every 4hrs for 24hrs) | No difference : pain scores,
PONV, PACU time or
morphine | Parent – too few
returned data – R:
trend to lower
pain score | 1- Max CHEOPS or Faces score used to calculate diff b/w grps Small groups | | da
Conceicao
(2006) | DB RCT
(? method)
N=90
Age: 5-7yrs | Saline (I) Ketamine 0.5mg/kg preop (II) or end of procedure (III) All: PR diclofenac 1mg/kg; dexameth, ondansetron | Oucher (0-100) every
20mins in PACU, 2hrly on
ward
Score >30 morphine
1mcg/kg(?) All regular
paracetamol 20mg/kg | Decr pain scores with
ketamine (no diff pre vs
post) 1-8hrs; decr suppt
analgesia | No diff in side-
effects; only one
pt PONV | 1+
Sleep apnoea
pts
Very low dose
morphine | | Umuroglu
(2004) | DB RCT
(envelope
method rand.)
N=60 (15 per
grp)
Age: 5-12yrs | K: IV ketamine 0.5mg/kg M: IV morphine 0.1mg/kg T: IV tramadol1.5mg/kg S: IV N saline | Numeric Rating Pain
Scale (NRS: 0-5, no-
severe pain) & CHEOPS
at 1,5,10,15,20,30,
45mins & 1,2,4,6hrs
Time to first analgesic
Intraop rescue: alfentanil
Postop rescue: pethidine
1mg/kg in PACU,
paracetamol on ward | Pain scores lower in M grp
only at some time points
Rescue analgesia: M 6/15;
K 11/15; T 9/15, S 15/15
Time to first analgesic:
longer in M grp | PONV: M 20%, T 20%, K 40%, S 6.6% | 1+ very small sample size, wide variability in time to first analgesic high rate PONV | | O'Flaherty
(2003) | DB RCT
age 3-12 yrs
n=80
(20/20/20/20) | K: 0.15mg/kg; M: MgSO4 30mg/kg; K+M; P: placebo ALL: fentanyl 2mcg/kg; dexamethasone 0.2mg/kg |
Objective Pain Scale (0-
10) on arrival in PACU,
30, 60 and 120mins;
fentanyl if OPS>4 | OPS: no diff – tended to be low in all groups Trend to higher score and incr PACU analgesic use in placebo grp but not significant | No diff in vomiting; no bleeding any group. Dreaming in 3 receiving ketamine, 2 in no ketamine grps | 1+
small sample
groups | |----------------------|--|--|---|---|---|---| | Elhakim
(2003) | DB RCT
(envelope
method)
N=50
Age: 5-12yrs | K: ketamine 0.1mg/kg
IM OR placebo 20mins
before
All: preop PR
diclofenac 2mg/kg;
intraop fentanyl
1mcg/kg | Visual analogue (animal pics increasing size) 0-10 in PACU & 6,12,24 hrs CHEOPS at 30mins, 1,2,3hrs Nurse observer VAS at rest & drinking (6hrs) Time to first analgesia Rescue: morphine to 0.2mg/kg in PACU; rectal paracetamol 30mg/kg PRN | CHEOPS: K lower Rest (1.5vs2.5) & swallowing (3.5vs5) pain score at 6hrs: K Time to first analgesia: K 130 vs 84 mins Rescue in PACU: K 3/25 vs 9/25 Total paracetamol: lwr in K Oral intake: improved in K | PONV: no
significant diff
No reported
psychomimetic
effects | non-validated pain tool; not clear which pain scores reported in results table; improvement in swallowing and oral intake | | Ozer (2003) | Observer
blinded,
randomised
(?method)
N=50
Age: 4-7yrs | T: tramadol 1mg/kg
OR
P: pethidine 1mg/kg | Bieri Faces Pain Scale (0-6) at 0, 10, 20, 45 mins in PACU Postop agitation: 1-3 (calm-hysterical) | Pain scores higher in T grp
at 0,10,20mins (approx 2.5
vs 4/6)
Agitation: T>P but not
significant | PONV: T 2/25; P
3/25 | 1+
small sample
size
short follow up | | Ewah (2006) | case cohort
day stay
tonsillectomy
n=100
age: 2-14yrs | Protocol: PR diclofenac 1mg/kg; PR paracetamol 20mg/kg; IM codeine 1mg/kg; IV ondansetron 0.1mg/kg; dexamethasone 0.25mg/kg. Discharge meds: ibuprofen tds; paracet qds; codeine qds | Wong-Baker Faces (0-5) Rescue (score>2): oral ibuprofen 5mg/kg Q'airre telephone 3/7 after discharge (100% response rate) | Score 0-2: 88% before discharge Score 3-5: D1~18%; D2~20%; D3~16% | Vomiting: 0%
before discharge;
D1 7%; D2 3% | 2+ | | White (2005) | Cohort following | Protocol: oral | Oucher (0-100) and | After guidelines: | After guidelines: | 2+ | | |--------------|------------------|------------------------|---------------------------|-----------------------------|-------------------|------------------|--| | , , | guidelines n=37 | paracetamol 20mg/kg | nausea score (0-4) 4 hrly | Intraop morphine 0 vs 3/34; | vomiting 5% | small sample | | | | Retrospective | preop; fentanyl 1- | until discharge | early analgesia 16% vs | _ | sizes; | | | | grp of previous | 2mcg/kg IV; diclofenac | _ | 41% | | paracetamol | | | | practice n=34 | 1-2mg/kg PR | | Additional ibuprofen 70% at | | alone | | | | | Discharge meds: | | 7.5hrs, 59% at 14hrs | | insufficient for | | | | | paracetamol 15mg/kg | | | | analgesia | | | | | 4/24; ibuprofen & | | | | postop | | | | | codeine PRN | | | | | | | AUTHOR | DESIGN | TREATMENT | OUTCOME
MEASURE | RESULT & CONCLUSION | SIDE-EFFECT/
SEC OUTCOME | EVIDENCE LEVEL / COMMENTS | |---------------|--|--|--|--|--|--| | Hollis (2000) | Meta-
analysis
Cochrane
6 trials | LA either injected before or after removal (5); spray after removal (1) | Pain score
Supplemental
analgesia | No significant difference | Small no. of trials
and small sample
sizes | 1+ | | Naja (2005) | DB RCT
age 5-12 yrs
n=90
(30/30/30) | GA: no injection; S: GA+ saline injection; LA: GA+ 1.5mls (1ml 2%lig, 0.5mls 0.5% bup, 3.7mcg fent, 6.7mcg clonidine ALL: fentanyl 3-4mcg/kg | VAS 0-10 at 0,6,12
hrs and daily for 10
days
Pain at rest, with jaw
opening, with eating
Oral intake first 10
hrs;
Time to solids;
cumulated analgesia | VAS lower in LA grp for first 4 days; LA <ga (0.48="" (93="" 0.10)="" 10="" 24hrs="" 41%)="" 60="" analgesic="" at="" day="" decrease="" hosp="" incr="" intake;="" la:="" leave="" oral="" postop="" proportion="" reqt<="" td="" vs="" within=""><td>Ear pain: LA 20%,
S 46%, GA 52%
Parent – incr
proportion
satisfied (90 vs 37
vs 14%)</td><td>1+Minor statistical
changes in VAS after
day 4
Saline injection alone
increased surgical
satisfaction and
improved outcomes!</td></ga> | Ear pain: LA 20%,
S 46%, GA 52%
Parent – incr
proportion
satisfied (90 vs 37
vs 14%) | 1+Minor statistical
changes in VAS after
day 4
Saline injection alone
increased surgical
satisfaction and
improved outcomes! | | Park (2004) | DB RCT
(computer
generated)
N=130
Age: 2-12yrs | Postop injection in tonsillar fossa 3mls S: saline OR R: ropivacaine 0.5% with adrenaline All: PR paracetamol 30mg/kg; fentanyl 1mcg/kg; dexamethasone 1mg/kg (max 25mg) | Obj Pain Score in PACU for 180 mins Time to oral intake Analgesic use (rescue: fentanyl IV, later oral paracetamol and codeine Follow up q'airre (day 1,3,7,14) | Pain scores: no sign diff first
120 mins
No sign diff: time to oral intake;
rescue analgesia; time to
normal activity postop | R: worse
behaviour score
(minimal diff); incr
PONV (41% vs
19%; ns); incr
neck pain (day 1-
14) | 1+ authors' question if adequate sample size or benefit masked by fentanyl | | Hung (2002) | DB RCT
age 3-16 yrs
n=99 (50/49)
day case | S: saline B: bupivacaine soaked swabs in fossa after tonsil removed – no dose given ALL: diclofenac 1.5mg/kg | VAS Faces (1-6) at
1, 3, 6hrs; time to
drink; time to eat;
postop analgesia
(paracet/codeine at
home) | Decrease mean pain scores at 1,3,6hrs (eg.1.88±0.77 vs 3.12±1.88); decrease time to drink (104 vs 159mins); decrease time to solids (167 vs 194mins) | No diff in postop
analgesic reqt
Control: 2/49
admit for
inadequate oral;
1/49 secondary
haemorrhage | 1+ statistical differences but relatively small ?clinical significance; groups too small for diff in side-effects | | Siannoni | DB RCT | S:saline; R: ropivacaine | VAS (0-10) at rest | Additional analgesia in | Ear pain: S 89%, | 1+ | | 2001) | age 3-15yrs | 1% 0.15ml/kg; R+C: rop | and drinking at day | recovery: S 21/21, R 15/21, | R 63%, R+C 61% | | | | n=64
(21/21/22) | + clonidine 1mcg/kg
peritonsillar injection
pre-incision ALL: ibuprofen 15mg/kg
+ 1mcg/kg fentanyl | 0, 1, 2, 3, 5, 10 Activity level (score 0-3) by parent Cumulative analgesia at day 3 and 5 (parac+codeine) | R+C 16/22 S: higher VAS in recovery – no diff at 24, 48 hrs – higher at day 3 and 5 VAS: no diff between R and R+C Cumulative analgesia: no diff at day 3, slight decr in R+C at day 5 (8 vs 11doses) | Earlier return to
full activity: R+C
8.1 vs S 5.8 days
No bleeding any
grp | Mild improvement in recovery and at after day 3 VAS – same scale 0-10 for all ages VAS – lower for drinking than rest scores ?sensitivity | |--------------------|---|--|--|---|--|---| | Kaygusuz
(2003) | ?blinded
randomised
(?method)
n=80
Age: 6-14yrs | B: 0.25% bupiv with adr
3-5mls pre-tonsillectomy
D:
1mg/kg dex in tonsil
L: 10% lignocaine spray
qds
P: saline spray qds | VAS 0-5
4hrly for 1st day,
then day 1,3,7 | VAS: All grps (~2.5) < P (4.3):
ns diff b/w grps
Day 3: L < P; ns diff b/w other
grps | PONV: no
difference (8-
10/20 each grp) | 2- | | Somdas
(2004) | Cohort
N=30
Age: 5-15yrs | Bupivacaine 0.5%
tonsillar fossa on right
and saline on left
All: metamizole in
PACU, paracetamol
later | No pain, more on
left, more on right,
equal pain both
sides: 1,4,8,16,24hrs | Pain didn't change on left,
decreased at 8,16 and 24hrs
on bupi side | | ?effect of LA injection only apparent after several hrs | | Akoglu
(2006) | DB ?method
of rand
N=46
(16/15/15)
Age: 2-12yrs | Peritonsillar fossa inj pre
removal 3-5mls
B: bupiv 0.25%
R: ropiv 0.2%
S: saline
All: preop oral
paracetamol 20mg/kg;
fent 1mcg/kg | mCHEOPS (0-10)
15mins &
1,4,12,16,24hrs;
score>5 fent
0.5mcg/kg or
paracetamol
10mg/kg | LA groups: decr pain score
from 1-24hrs; decr suppt
analgesia; incr time to first
rescue | No diff in nausea or otalgia | 1- | INTERVENTION: Strabismus or squint : LA / topical | AUTHOR | DESIGN | TREATMENT | OUTCOME
MEASURE | RESULT &
CONCLUSION | SIDE-EFFECT/
SECONDARY | EVIDENCE
LEVEL /
COMMENTS | |------------------|--|--|--|---|---|--| | Steib
(2005) | DB RCT
Age: 2.5-6yrs
N=40, 38
complete
?method of
randomisation
Surgery 35mins | Subtenon bupivacaine 0.5% vs saline before surgery by surgeon (2mls 2.5-4yrs; 3mls 4-6yrs) All: alfentanil 30mcg/kg + bolus 10mcg/kg if MAP increase 20% All: paracetamol 30mg/kg IV | CHEOPS pain scale (4-13) in recovery and every 30mins until discharge Rescue reqt: niflumic acid 20mg/kg PR score >6; nalbuphine 0.2mg/kg if high score persists | Intraop alfentanil*: 32.3±7.1 vs 43.8±11.5 Postop analgesic reqt for CHEOPS >6: NSAID* 12 vs 19 pts; nalbuphine* 0 vs 15 pts Decreased time in recovery*: 95±30 vs 145±47mins | Reduced OCR*: 4/35 vs 17/30 Reduced PONV*: nausea 0 vs 11; vomiting 1 vs 7 No block complications | 1+ ? statistics incomplete pt numbers for pain scores — significant difference (9 vs 6) only at first and 30 minute time point (c/w titration of analgesia) | | Deb
(2001) | Not blinded,
?method of
randomisation
Age: 5-14yrs
N=50
(strabismus
15/25 and
17/25)
Surgery 65 mins | Peribulbar block by
anaesthetist (0.3mg/kg
2%lig 0.5%bup mix) vs
pethidine (1mg/kg)
All: pethidine 0.5mg/kg if
HR or BP >20% increase | Modified CHEOPS (0-9) at 30mins, 2 & 6hrs Pain score: colour scale (no, mild, moderate, severe) + VAS 0-10 at 2, 6, 24hrs Analgesic reqt: request or VAS>5 ibuprofen 10mg/kg in first 24 hrs | Intraop analgesia*: 0/25 vs 6/25 Increased proportion pain free at 30mins, 2, 6 and 24hrs Postop analgesic reqt: 6/25 vs 19/25 Parent satisfied*: 18/25 vs 5/25 | Reduced OCR*:
1/25 vs 15/25
Reduced
PONV*: 5/25 vs
19/25; severe
(>3 vomits) 2/25
vs 10/25
No block
complications | 2+ Statistically but not clinically significant differences in intraop BP and HR Not blinded and inadequate control grp CHEOPS modified by grp – not validated | | Sheard
(2004) | Parents blinded
Computer
randomisation
Age: 15yrs or | Subtenon lignocaine 1ml
2% lignocaine by surgeon
at end
All: codeine 1mg/kg PR, | Parental
assessment of pain
30mins, 1,2,4hrs:
Objective Pain | Pain score: *at 30 mins
6 vs 4; *total score over
4hrs 18.5 vs 22
Suppt analgesia: ns | No block complications | 1-
no injection in
control grp;
parental | | | younger
(6±3yrs)
N=111 (54/57)
Surgery majority
bilat | diclofenac 1mg/kg or
paracetamol 20mg/kg PR
if asthmatic; ondansetron
0.1mg/kg; amethocaine 1
drop 1% at end | scale (4-12) Suppt analgesia: oral ibuprofen or paracetamol; IM codeine if severe (not req) | 27/54 vs 23/57 (by
nurses, not linked to
pain score) | | assessment only;
summed pain
scores (not valid,
all due to
difference at 1 st
measure);
incomplete data | |-------------------|--|--|---|---|--|--| | Chhabra
(2005) | RCT (envelope) Postop assessor blinded Age: 3-15 yrs N=105 Surgery 40 mins | Peribulbar block (mix
lig+bup by surgeon) vs
fentanyl 2mcg/kg vs
pethidine 1mg/kg
All: IM ketorolac 1mg/kg | All India Pain Score
at 2,6,24hrs
Rescue: iv
pethidine 0.5mg/kg
or oral paracetamol
10mg/kg (which
drug used not
reported) | Time to first analgesic*: 7.1±1.8 vs 4.7±2 vs 1.8 vs 2.6 Number requiring suppt: ns | PONV (block vs
peth*): 1 vs 4
vs 9 (if present
metoclopramide
0.15mg/kg)
OCR:
decreased by
block (1 vs 8 vs
7) | 1- ? pain score method and not clear who assessed primary aim was PONV not pain | ^{* =} significant difference; PONV = postoperative nausea and vomiting; OCR = oculocardiac reflex | Morton
(1997) | Randomised
(?method);
?blinded
Age: 3-8yrs
N=40 (18/17
analysed)
Surgery 35 mins | 2 drops oxybuprocaine
0.2% (shorter duration
than amethocaine) vs
diclofenac 0.1% after
induction | Observer pain
score (0-3) at
wakening, 1,2,4,24
hrs
Rescue: further eye
drops; paracetamol
15mg/kg if pain
persisted | Pain scores: 1 hr* 28% vs 71% no pain; other times similar Suppt analgesia: no differences (0-3 doses in 24 hrs) | PONV: ns
differences
OCR: no
episodes in
either group | 1+ ?adequate sensitivity; no opioids & low rate PONV Day case: duration approx 30 mins | |------------------|--|--|---|---|---|--| | Kim
(2003) | DB RCT
Age: 2-7yrs
N=51 (19/14/18)
Anaesthesia
time 60 mins | Amethocaine 0.5% vs
ketorolac 0.5% vs saline:
2 drops at beginning and
end of surgery
All: dexamethasone
0.15mg/kg +
perphenazine 35mcg/kg | CHEOPS every 5 mins in recovery Rescue: paracetamol 20mg/kg if pain score >6; codeine 1mg/kg second line (not req) | Pain scores: no sig. differences (mean 5 all groups) Analgesic requirement: ns (one dose paracetamol in 43%) Time to analgesic: ns (34 vs 57 minutes) | PONV: ns – rate
low 2%' only
recorded for first
few hrs in
hospital | 1+ ?adequate sensitivity authors question if CHEOPS adequate for ocular pain inadequately powered for time to first analgesic | | Bridge (2000) | DB RCT
(?method of
randomisation)
Age: 4-12yrs
N=30 (17/13)
Surgery 25 mins | Ketorolac 0.5% vs saline:
6 drops at beginning and
end
All: paracetamol 20mg/kg
preop | CHEOPS every 5 mins in recovery then Faces scale (Bieri 0-6) Rescue: morphine 20mcg/kg IV in recovery; codeine 0.5mg/kg oral later | Pain scores: no sig. diff. Time to first analgesic: ns Rescue: ns; morphine 7/17 vs 6/13, codeine 11/17 vs 7/13, paracetamol at home 13/17 vs 9/13 | PONV: rate low;
3/17 vs 4/13
(some 24 hr
data incomplete) | 1+ ?adequate sensitivity authors question sensitivity/specific ity of CHEOPS | | Snir
(2000) | Randomised (odd/even) Single blind Age: 8 ± 6 yrs N=40 Surgery: majority bilat (no time) | Diclofenac 0.1% vs
dexamethasone 0.1%
immediately postop and
regularly for 4 wks | Discomfort: 0-3
(none-severe) at 1
day, 1,2 and 4 wks | Discomfort: lower score with diclofenac at 2wks (0.2±0.3 vs 0.6±0.5) | Conjunctival
chemosis and
IOP better with
diclofenac | 1-
statistical but not
clinical significant
difference in
discomfort score :
predominantly
surgical outcome
study | | Eltzschig
(2002) | RCT
(lottery
randomisation)
postop blinding
only
Age: 2-12yrs
N=81
Surgery 75 mins | Remifentanil 1mcg/kg+
0.1-0.2mcg/kg/min vs
fentanyl 2mcg/kg+
1mcg/kg every 45mins
intraop
All: PR paracetamol
10mg/kg | Objective Pain Score (0-10) at 15, 30, 45 and 60 mins postop Postop: score>3 PR paracetamol 10mg/kg, >5 oxybuprocaine drops | Higher pain scores for 30 mins with remi* (4.7 vs 2) | PONV:
increased
likelihood of
early vomiting
with fentanyl | 1+
PONV primary
aim | |----------------------|--|---|---|--|---|---| | Wennstro
m (2002) | Open Randomised (?method) Age: 4-16 yrs N=50 Surgery 40 mins | PR diclofenac 1mg/kg at induction vs IV morphine 0.05mg/kg at end of surgery All: oral paracetamol 15mg/kg preop; fentanyl 2mcg/kg at induction | Wong Baker Faces
(0-5) every 3 rd hr
Rescue: morphine
0.05mg/kg IV
(score >2) + 6/24
paracetamol
15mg/kg | Pain scores: no sig. diff.
Suppt morphine: 5 vs
10pts | PONV*: 3/25 vs
18/25
Earlier
discharge from
PACU*: 240 vs
336 mins | 2+ | | Shende
(1999) | Blinded observer postop Randomised (assignment list) Age: 2.5-15yrs N=52 Surgery 50mins | ketorolac 0.9mg/kg IV vs
pethidine 0.5mg/kg | Objective Pain Score on arrival, 30 and 60 mins in PACU Rescue: paracetamol 20mg/kg oral | Pain scores: no sig diff
(all low, median 2)
Suppt paracetamol: ns
10/26 vs 11/26 | PONV*: 6/26 vs
19/26 | 1-
pain scores low
and only early
assesst. | | Mendel
(1995) | Randomised
(?method)
Nurse assessor
blinded
Age: 1-10yrs
N=54
Surgery 30 mins | ketorolac 0.9mg/kg IV vs
fentanyl 1mcg/kg vs
saline | Objective Pain Scale (0-10) 20,40,60 mins then hourly Rescue: score >2 paracetamol 10- 20mg/kg PR; >5 IV fentanyl 0.5mcg/kg (not req) | Pain scores: no sig. diff.
Suppt paracetamol: ns
(13/18 vs 12/18 vs
14/18) | PONV*: 3/18 vs
13/18 vs 6/18 | 1- "pain scores low all groups" median 2-2.5 **full placebo group | | Kokki
(1999) | DB RCT (?randomisation | ketoprofen 1mg/kg +
1mg/kg over 2hrs vs | Maunuksela Pain
score (0-10) 15 min | Pain score*: lower only at 30min time point | PONV*: 5/30 vs
12/29 | 1+ | | | method) | saline | intervals, VAS in | (correlation between | Incr PONV | | |--------|-----------------|---------------------------|--------------------|--------------------------|------------------|---------------------| | | Age 1-12yrs | All: fentanyl 1mcg/kg | older children | observer and VAS | associated with | | | | N=59 | | Rescue: fentanyl | reported scores) | postop fentanyl, | | | | Surgery 30 mins | | 1mcg/kg score >3 | Suppt fentanyl: no. pts | not with no. | | | | | | | (21/30 vs 26/29) no sig | muscles or | | | | | | | diff; no doses* (44 vs | technique | | | | | | | 62) | (recession vs | | | | | | | Time to first analgesic: | resection) | | | | | | | no sig diff | | | | Mikawa | DB RCT | flurbiprofen 1mg/kg IV vs | Objective Pain | Highest OPS*: median | PONV: ns 7/30 | 1+ | | (1997) | (envelope | 0.5mg/kg vs saline | Scale on wakening | lower with 1mg/kg, 4.5 | vs 9/30 vs 9/30 | Half-life 5.8hrs in | | | method) | | then 30, 60, 90, | vs 7.5 vs 7 | | adults | | | Age: 2-11yrs | | 120mins, | Suppt diclofenac*: 15/30 | | Only max pain | | | N=90 | | 3,4,5,6,8hrs | vs 29/30 vs 28/30 | | scores reported | | | Surgery 80mins | | Rescue: diclofenac | | | (?effect of time) | | | | | PR 12.5 or 25mg if | | | **full placebo grp | | | | | OPS>5 | | | . 01 | INTERVENTION: Vitreoretinal surgery | AUTHOR | DESIGN | TREATMENT | OUTCOME
MEASURE | RESULT & CONCLUSION | SIDE-EFFECT/
2° OUTCOME &
CONCLUSION | EVIDENCE LEVEL / COMMENTS | |--|---|---------------------------------------|--|---|---|--| | Subrama
niam
(2003a) | Case control;
randomised
(?method of rand)
N=85
Age: 6-13yrs | Peribulbar block IV pethidine 1mg/kg | 4 point VAS (0,1,2,3) at 2,4, 24 hrs CHEOPS in PACU Rescue: peth 0.5mg/kg | LA grp: lower pain score in PACU; higher proportion pain free at all time points; decreased supplemental analgesia | Decreased incidence oculocardiac reflex and decr PONV with LA | 2+ "pre-emptive" in title but not adequate design | | Subrama
niam
(2003b) | DB RCT (random
number table)
N=86
Age: 7-16yrs | Ketoprofen 2mg/kg
Pethidine 1mg/kg | 4 point VAS (0,1,2,3) at 2,4, 24 hrs Rescue: score 2: oral ibuprofen; score 3:peth 0.5mg/kg | No significant diff in pain scores; no difference in rescue | PONV decr with
NSAID | 1- | | Deb
(2001)
**also in
strabismu
s | Case control;
randomised
?method
N=50
Age: 5-14
Strabismus (32);
vitreoretinal (18) | Peribulbar block
Pethidine 1mg/kg | Coloured 10 point
VAS at 2,4, 24 hrs
CHEOPS at 30
mins in PACU
Rescue: oral
ibuprofen (VAS>5) | Intraop analgesia*: 0/25 vs 6/25 Increased proportion pain free at 30mins, 2, 6 and 24hrs Postop analgesic reqt: 6/25 vs 19/25 Parent satisfied*: 18/25 vs 5/25 | Reduced OCR*:
1/25 vs 15/25
Reduced PONV*:
5/25 vs 19/25;
severe (>3
vomits) 2/25 vs
10/25
No block
complications | 2+ Statistically but not clinically significant differences in intraop BP and HR Not blinded and inadequate control grp CHEOPS modified by grp – not validated | **INTERVENTION:** Tympanomastoid surgery | AUTHOR | DESIGN | TREATMENT | OUTCOME
MEASURE | RESULT & CONCLUSION | SIDE-EFFECT/
2° OUTCOME &
CONCLUSION | EVIDENCE LEVEL / COMMENTS | |------------------|---|---|--|--|---|--| | Suresh
(2002) | DB RCT (computer generated) N=40 Age: 2-18yrs cochlear implant (25), mastoidectomy (15) | Grt auricular nerve block
2ml 0.25%bupivacaine +
saline IV
Morphine 0.1mg/kg IV +
saline block
No other analgesia | Objective Pain
Scale (OPS) every
5 mins for 60mins
in PACU, then
every 30 mins for 6
hrs
Rescue (OPS>6)
morphine 50mcg/kg | No significant diff: trend higher
pain score and increase
rescue with LA
Pain at home: no diff in
number of analgesic doses
(77% return q'aire) | PONV : treat
ondansetron :
increased in
opioid grp | 1+ Power analysis based on PONV not analgesia; low numbers & high variability in pain scores | | Suresh (2004) | DB RCT
N=40
Age: 2-18yrs
cochlear implant
(23),
mastoidectomy (17) | BB: grt auric nerve block
bupi 0.25% before
incision and 1/24 before
end of case
SB: saline before incision,
bupi 1/24 before end of
case
No other analgesia | OPS every 5 mins
for 60 mins in
PACU then hrly for
6hrs
Rescure (OPS>6):
morphine 50mcg/kg | No significant diff: OPS,
amount of rescue in PACU or
during admission, time to first
analgesia | PONV: no diff | 1+
Aim to investigate
pre-emptive effect | | Hasan
(2004) | Retrospective case
series
N=144
Age: 11±3.7yrs
45% middle ear,
55% mastoid | Anaesthesia and analgesia not standardised : intraop fentanyl | Pain: Wong-Baker
(<8yrs); VAS
(>8yrs) | Mastoid: increased likelihood to need morphine in PACU and require admission. Higher risk of PONV and require admission: cholesteatoma, pain score >5, morphine reqt in PACU | 36% discharged
same day; 92%
discharged within
23hrs | 2+ | INTERVENTION: Dental procedures | AUTHOR | DESIGN | TREATMENT | OUTCOME
MEASURE | RESULT & CONCLUSION | SIDE-
EFFECT/
2°
OUTCOME
&
CONCLUSIO
N | EVIDENCE LEVEL
/ COMMENTS | |----------------------|---|--|--|---
--|--| | Purday
(1996) | DB RCT (?method of rand.; observer only blind) N=120 (30 each grp) Age: 2-10yrs Day case dental restorations (~50% extractions) | Ketorolac 0.75, 1,
1.5mg/kg
Morphine 0.1mg/kg | Objective Pain Score 15 & 30 mins after arrival in PACU Rescue: paracetamol 20mg/kg or codeine 1mg/kg if OPS>6 | No diff in pain
score at 15 or 30
mins
No diff in rescue
or paracetamol
doses at home
first 24hrs | Increased
vomiting in
morphine
grp; no
bleeding
problems | 1-
Brief follow-up
Scores low in all
grps with wide
range (?sufficient
power) | | Littlejohn
(1996) | DB RCT (?method of rand; observer only blind) N=60 (21/19/20) Age: mean 6yrs (minimum 2yrs) Day case extractions | IV nalbuphine 0.3mg/kg
PR diclofenac 1-2mg/kg
No analgesia | Objective Pain Scale (0-
10) at 5,10,15,30,45
minutes after wakening
Rescue paracetamol | No diff in pain
scores, rescue or
PONV | | 1- Very brief procedures: anaesth time <10mins Majority scores 0 (low sensitivity) | | Roelofse
(1999) | DB RCT
N=60
Age: 4-7yrs
Extractions (mean
10) | Oral tramadol 1.5mg/kg
Placebo
30 mins preop | Objective Pain Scale;
Oucher faces scale
Rescue paracetamol | Oucher:
significantly lower
at 60 and
120mins
Rescue 19.4% vs
82.8% | Longer
recovery with
tramadol (48
vs 36mins;
wide SD both
grps) | 1-
(abstract only) | | Anand
(2005) | Randomised: one side LA | Intraligamental LA to one side of mouth | VAS; rate which side better | VAS not significantly | | 2+
no control injection | | Andrzejo
wski
(2002) | N=30 Age: 11.3±1.7yrs Extraction permanent molars DB RCT (envelope; observer only blind) N=120 Age: 5-12yrs | Soaked swabs over exposed teeth sockets Bupivacaine 0.25% + adr | 4 point pain scale
(0=don't hurt to 3=hurt the
most): include non-
validated cartoon faces | different between
LA and
contralateral side;
63% pain better
on LA side (85%
boys, 47% girls)
No diff in pain
scores | | 1+ | |----------------------------|--|---|--|---|---|---| | | Extractions >5 teeth | Saline
All: PR diclofenac
~1mg/kg | 15 and 30 mins following recovery Nurse observer score | | | | | Gazal
(2004) | DB RCT (computer generated envelope) N=135 Age: 2-12yrs Extractions (mean 7) | Soaked swabs over
exposed teeth sockets
Bupivacaine 0.25% +
adr
Sterile water
All: oral paracetamol
15mg/kg preop | 5 point distress scale (0-
4) [faces scale similar to
wong-Baker]
Preop, immediate postop
and 15 mins | No diff in "distress" scores | Increased distress <6yrs compared with older children irrespective of treatment group | 1+ "decided to assess distress instead of pain because it can be difficult to measure pain in young children" | | Greengra
ss (1998) | DB RCT (envelope)
N=24
Age: 7-15yrs
Extractions | Pain after extractions (24 of 42) randomised to soaked swab on socket: Bupivacaine 0.25% + adr Saline | ?method "asked whether had pain or not" | Reduction in pain
at 10 minutes in
10/12 of
bupivacaine grp | | 1+
(abstract only) | | Atan
(2004) | Cohort: morbidity
after day stay GA
dental treatment
N=121
Age: 6-16
Restorations 30%; | All: PR analgesia
diclofenac, codeine,
paracetamol ± alfentanil
(no details of dose)
92%: LA during
procedure | Anxiety and pain
(Objective Pain Score in
PACU and verbal scales):
preop, before discharge,
36, 72 and 148hrs postop | OPS: 50% no
pain in PACU
LA reduced pain
(OR 0.39)
At 36hrs: 28%
moderate and 9% | Increased pain associated with increased no. procedures. | 2+ | | | extractions 60%;
surgical procedure
54% | | | severe pain "Pain following dental GA was most prevalent and longlasting symptom of postoperative morbidity" | | |---------------------|---|---|--|---|---| | Coulthard
(2006) | DB RCT (computer
generated)
GA for dental
extractions (1-10)
N=142
Age: 4-12 yrs | 2% ligonocaine with
adrenaline OR saline
buccal infiltration
ALL: paracetamol
15mg/kg preop | Faces scale (not validated) by nurse on waking and 30 mins, parents at 24hrs | No difference in pain scores at waking, 30mins or 24hrs. No difference in proportion requiring paracetamol at home (doses not reported) | 1-
Limited assessment
time points | INTERVENTION: Sub-umbilical surgery h – inguinal hernia, o – orchidopexy, c – circumcision, hs – hypospadias, hc – hydrocoele, v – vur, p - phimosis | AUTHOR | DESIGN | TREATMENT | OUTCOME
MEASURE | RESULT & CONCLUSION | SIDE-EFFECT/
SECONDARY
OUTCOME &
CONCLUSION | EVIDENCE
GRADE /
COMMENT
S | |----------------------------------|--|---|--|--|--|--| | Ivani et
al.,
(2005) | RCTDB
N=60
1-7yr
h,o,c,hs | Caudal 1ml/kg
1. R0.2%
2. L0.2% | CHIPPS up to 24hrs
Score>=4 paracet40mg/kg +
codeine 1-2mg/kg | No difference pain scores
Rescue analgesia Gp1(7) = Gp2
(6) | No difference
motor block | 1+ | | Willschke
et al.,
(2005) | RCT
N=100
0-8yr
h,o,hc | IL/IG NB L0.25% 1. Ultrasound 2. Traditional 0.3ml/kg | Intraop – haemodynamics
OPS – duration of block
Score>11 paracet 40mg/kg pr | Gp 1 - ↓ intraop fentanyl and more stable haemodynaics. Also ↓LA use – 0.19ml/kg Gp 1 - ↓ paracet use (6 vs 40%) | Gp1 ↓ time of surgery (ns) | 1+ | | Breschan
et al.,
(2005) | RCT
N=182
1-7yrs
h,o | Caudal 1mg/kg
1. L0.2%
2. R0.2%
3. B0.2% | CHIPPS up to 24hrs
Score>10 paracet 20-30mg/kg pr | No difference duration of analgesia, pain scores, analgesic use, No requiring no further analgesia (~1/3 in all gps) | No difference motor | 1+ | | Martindal
e et al.,
(2004) | RCTDB
N=30
3mn-6yr
h,o | Caudal B0.25% 1ml/kg 1. Plain 2. +S-Ket 0.5mg/kg (caud) 3. +S-Ket 0.5mg/kg IV Paracet 20mg/kg po premed + diclofenac 1mg/kg pr indn | mOPS up to 24hrs
score>4 Rescue analgesia
Time to 1 st analgesia | Gp2 ↑ Time to 1 st analgesia, ↓ analgesic use in 24hrs No difference pain scores | No difference
sedation, PONV,
mictn, motor | 1+ | | Leoni et al., (2004) | RCT
n=82
0-8
YEARS
MINOR
ABDO | 28 – alfent 25mcg/kg iv. 24 - periph nerve blockade with ropivacaine 0.475% 1ml/kg. 30 – 12.5 mcg/kg alfent iv + periph nerve blockade with | Intra op bp and pulse Post op FLACC obs tool + numerical scale done by nurses docs, parents and children | No difference intra or post op efficacy | No differences | no power calc. unequal groups suggests | | | AND
UROLOGI
CAL | ropivacaine 0.475% 1ml/kg. | | | | poor
randomisati
on
technique | |--|---|---|--|---|--|--| | Ivani et
al.,
(2003) | RCT
N=60
1-7yr
h,o,hc,hs,p | Caudal 1ml/kg
1. L0.125%
2. L0.2%
3. L0.25% | Intraop haemodynamics CHIPPS upto 24hrs Score>=4 paracet 40mg/kg + codeine 1-2mg/kg | Time to 1 st analgesia
Gp2=Gp3>Gp1
No difference use rescue
analgesia | No PONV
Minimal motor
block in all gps | 1+ | | Weber
and Wulf,
(2003) | RCTDB
N=30
1mn -9yrs
h,o,c,hc | Caudal B0.125% 1ml/kg
1. Plain
2. +S-Ket 0.5mg/kg | Intraop – haemodynamics
OPS upto 24hrs
Score>3 Paracet 20mg/kg pr | No further analgesia Gp2>Gp1 (10 vs3) | No difference
motor,
Haemodynamics
No psychomotor
effects | 1+ | | Turan et al., (2003) | RCTDB
N=44
1-6yr
h,hs | Caudal R0.2% 0.5ml/kg
1. Plain
2. + Neo 2mcg/kg | Intraop – haemodynamics TPPPS up to 24hrs Score>3 paracet 20mg/kg pr Time
to 1 st analgesia | Gp2 - ↑ Time to 1 st analgesia, ↓ pain scores at 6 & 12hrs, ↓ analgesic use, ↑pts requiring no analgesia (15 vs 4) | No difference
PONV (low),
sedation, motor | 1+ | | (Surasera
nivongse
et al.,
(2003) | RCTB
N=103
1-12yrs
h,hc
(2
exclusions
analgesia
for other
reason) | Wound Infiltration vs IL/IG
NB B0.5% 0.25ml/kg + Adr
5mcg/ml
1. Saline 20 – 60s pre
closure
2. 20s pre closure
3. 60s pre closure
4. NB at induction | CHEOPS upto 24hrs
Score>=7 fentanyl (hosp) paracet
10mg/kg (home) | Gp1 - ↑ pain scores, ↑ analgesic use, ↓ time to 1 st analgesia No difference in other gps | PONV low in all gps 5pts in gp4 and 1pt in gp2 had temporary gait problems | 1+ | | Ivani et
al.,
(2002b) | RCTB
N=60
1-7yr
h,o,c,hc | Caudal 1ml/kg
1. R0.2%
2. B0.25%
3. L0.25% | Intraop – haemodynamics
OPS up to 24hrs
Score>=5 paracet 10-15mg/kg +
codeine 0.5-1mg/kg pr | 5pts in each gp required rescue
analgesia
No difference time to 1st
analgesia | ↓ motor in 1 st hr in gp1 No difference haemodynamics | 1+ | | Ivani et
al.,
(2002a) | RCTB
N=40
1-7yrs
h,o | Caudal R0.2% 1ml/kg +
Clon 2mcg/kg
Vs
IL/IG NB R0.2% 0.4ml/kg + | Intraop – haemodynamics
OPS upto 24hrs
Score>=5 paracet/codeine pr | Rescue analgesia gp2>gp1 (70 vs 45%) Time to 1 st analgesia Gp1 160min vs Gp2 265min (ns) | No difference sedation | 1+ | | | | Clon
2mcg/kg | | | | | |-----------------------------------|--|---|--|--|---|----| | Bosenber
g et al.,
(2002) | RCTDB
N=110
4-12yrs
h,o,hc | Caudal 1ml/kg
1. R0.1%
2. R0.2%
3. R0.3% | Intraop – haemodynamics Faces + Observer 4pt scale up to 8hrs Score>3 or mod pain paracet 20- 30mg/kg or tilidine 1mg/kg Time to 1 st analgesia | No difference in time to 1 st analgesia (3.3 vs 4.5 vs 4.2hrs) The higher the block the better the analgesia (ns) Pain scores and analgesic use ↑ Gp1 c.f. Gp3 In 1 st 8hrs – 26pts in each gp needed paracet but dose↑ with ↓ Ropiv dose Tilidine use 18 vs 14 vs 11pts | Motor block:
Gp3>Gp2>Gp1
No difference
PONV (20-30%),
mictn | 1+ | | Ivani et
al.,
(2000) | RCTDB
N=40
1-7yr
h,o,c,hc | Caudal R0.2% 1ml/kg
1. Plain
2. +Clon 2mcg/kg | Intraop – haemodynamics
OPS up to 24hrs
Score>=5 paracet 10-15mg/kg +
codeine 0.5-1mg/kg pr | Time to 1st analgesia ↑ Gp2 (225 vs 125 min) Analgesic use ↓ Gp2 (2 vs 9) 5pts Gp1 needed analgesia in 1 st 3hrs (0 in Gp2) | No difference
motor, sedation,
haemodynamics
No PONV | 1+ | | Kaabachi
et al.,
(2005) | RCT
N=98
1-12yr
h,o | IL/IG NB B0.25% 0.3ml/kg
1. Plain
2. +Clon 1mcg/kg | CHEOPS 1-6yrs, VAS 6-12yrs upto 6hrs Score>6 or 50 paracet 15mg/kg iv Score 4-5 or 30-50 paracet 15mg/kg pr Parent questionnaire | No difference analgesic use, pain scores 3pts in each gp intraop fentanyl Over 6 days more pts in gp1 needed analgesia | No difference sedation scores | 1- | | Passariell
o et al.,
(2004) | RCTDB
N=44
1-5yrs
h,o,hc | Caudal 1ml/kg
1. S-Ket 1mg/kg
2. S-Ket 1mg/kg + Clon
1mcg/kg | Introp – haemodynamics
CHEOPS
Score>=9 Paract 200mg/kg +
codeine 5mg/kg | No difference – time to 1 st analgesia (16 vs 20hrs), pain scores Rescue analgesia Gp1 > Gp2 (38 vs 18%) | No difference
mictn, motor,
haemodynamics
No PONV, | 1- | | Bano et al., (2004) | RCT
N=60
1-8yrs
ing +
urogential | Caudal B0.25% 0.75ml/kg
1. Plain
2. +Midaz 50mcg/kg | Pain scoring(?) up to 24hrs
Time to 1 st analgesia
Score>4 Diclofenac | ↑ time to analgesia Gp2 (21.4 vs 9.9hrs) | ↑ sedation in 1 st hr
in Gp2 | 1- | | Joshi et | RCTDB | Caudal B0.125% 1ml/kg | Faces (hosp) – observational | No of patients needing fent > gp2 | ↑PONV gp2 (8 vs | 1- | | al.,
(2004) | N=36
6mn-6yr
h,o,hc | 1. Clon 2mcg/kg
2. Saline | Mod/severe – fentanyl
VAS (home)
Rescue – paracet/codeine | (9 vs 4)
No difference time to 1 st analgesia
(3-4hrs) or analgesia at home | 2) | | |---|---|--|---|--|---|----| | Khan et
al.,
(2002) | RCTDB N=60 1-8yrs h,o Terminated at 30pts (10/gp) due to rate of PONV | Caudal B0.5% 2mg/kg
1ml/kg
1. Plain + IV saline
2. Plain + IV Buprenorphine
2.5mcg/kg
3. + buprenorphine
2.5mcg/kg + IV saline | Intraop – haemodynamics
CHEOPS + VAS
Score>4 or 30 – rescue analgesia
Time to 1 st analgesia | No further analgesics
Gp3>Gp2>Gp1
(80 vs 50 vs 30%) | PONV
Gp3>Gp2>Gp1
(80 vs 50 vs 20%) | 1- | | Luz et al.,
(1999) | RCT
N=36
6mn-6yr
h,o,c | Caudal B0.18% 1.5ml/kg
1. + Clon 1mcg/kg
2. + Morphine 30mcg/kg | Intraop – haemodynamics
OPS upto24hrs
Score>3 paracet 100-200mg or
nalbuphine 0.2mg/kg | No further analgesia Gp1 61% Vs
Gp2 50%
Remaining pts no difference in
analgesic use (1-3doses)
OPS No difference and low in
both gps | No motor, mictn,
haemodynamics
problems
PONV 5 vs 4pts | 1- | | Bosenber
g and
Ratcliffe,
(1998) | RCT
N=88
2-10yrs
h,o | 1. IV Tramadol 1mg/kg
2. IV Tramadol 2mg/kg
3. IV Pethidine 1mg/kg
4. IV Saline | Intraop – haemodynamics
5pt verbal pain scale up to 6hrs
Analgesic use | Pain scores Gp4>Gp3=Gp1>Gp2 Time to 1 st analgesia: 218 vs 251 vs 223 vs 175min Pts needing rescue analgesia: 13 vs 9 vs 14 vs 15 | | 1- | | Gulec et
al.,
(1998) | RCT
N=60
1-12yrs
h,o,c,hs,hc | Caudal B0.125% 0.75ml/kg
1. Plain
2. + Midaz 50mcg/kg
3. + Morphine 50mcg/kg | Intraop – haemodynamics
5pt pain scale – Verbal >5yrs,
observational < 5yrs
Score>=3 paracet 50-
100mg/kg/day | Time to 1 st analgesia
Gp2>Gp3>Gp1
(21 vs 14.5 vs 8.1hrs) | PONV: Gp1=Gp3>Gp2 (30,35 vs 15%) Sedation: Gp2=Gp3>Gp1 No difference mictn, motor | 1- | | Anatol et al., (1997) | RCT
N=183
5-12yr
h,o,hc
(15
exclusion
lack of
data or
repeat
procedure | B0.5% 0.4ml/kg 1. Infiltration 2. IL/IG NB 3. Combination | CHEOPS – up to discharge
Score <=6 satisfactory, >=9
severe pain | No difference time to 1 st analgesia, analgesic use (55-65%) Satisfactory pain – 78 vs 80 vs 81% Severe pain – 9.4 vs 8.4% vs5.9% | No difference
PONV (~25%) | 1- | |--------------------------------|---|---|---|--|--|--------------------------------| | Ho et al.,
(1997) | RCT
N=51
1-6yr
h,o,c | Caudal B0.25% 0.6ml/kg +
Adr 1:200,000
1. Pre surg
2. Post surg | Faces pain scale (observational)
Analgesic use | No difference between the groups | | 1- | | Ivani et
al.,
(1996) | RCT
N=42
1-10yr
h,o | Caudal Mepiv 1% 7mg/kg
1. + Saline1ml
2. + Clon 2mcg/kg | Broadman OPS | Time to 1st analgesia Gp2 >Gp1 (218 vs 143 min) | ↑ sedation Gp2 | 1- | | Dalens et
al.,
(2001) | Cohort
study
N=22
1-12yrs
h,hc | IL/IG NB R0.5% 3mg/kg | OPS up to 6hrs
Score>4 paract 30mg/kg or
nalbuphine 0.2mg/kg | Pain < 4: 73% at 1hr, 86% at 2hr,
91% at 3-6hr
Mod/severe pain in 3pts at 1-2hr
9/22 needed rescue analgesia | 1pt PONV
1pt Fem NB | 2-
5pts given
alfentanil | | Lonnqvist
et al.,
(2000) | Cohort
study
N=18
1-8yrs
hs,o v | Caudal R0.2% 1ml/kg
+paracet 100mg/kg/day | 4pt pain scale upto 36hrs
Time to 1st analgesia | 90% pts good pain relief at all times Median time to 1st analgesia 12.6hrs | Vomiting 50%
Pruritis 12%
Motor block 0% | 2- | | Ho and
Keneally
(2000) | Case
series
N=90
1-13yrs
h,o | Infiltration of IL/IG block –
anaes dependent
2/3pts give paracet pr on
indn | Pain scoring (?) in hosp
Parent questionnaire at home
Rescue paracet 15mg/kg or
codeine 0.5 – 1mg/gk | More orchid patients required periop opioids and needed more paracetamol at home | PONV similar (20-30%) | 3 | INTERVENTION: Circumcision | AUTHOR | DESIGN | TREATMENT | OUTCOME
MEASURE | RESULT & CONCLUSION | SIDE-EFFECT/
SECONDARY
OUTCOME &
CONCLUSION | EVIDENCE
GRADE /
COMMENTS | |------------------------------|--|--
--|--|--|---| | Allan et al.
(2003) | Cochrane
review
7 Studies
374pts 28dy –
16yr | Caudal vs DNB (2) Caudal vs opioid (4) Caudal vs opioid + paracet (1) | Rescue Analgesia
(3)
VAS scores (6) | Caudal vs DNB – No difference
Caudal vs opioid - ↓rescue
analgesia in early postop | No diff PONV
↓PONV with
caudal | 1+ - small no of
studies, no firm
conclusions | | Weksler et al. (2005) | RCT
N=100
3-8yrs | DNB B0.5% (+ aug)
Vs
Caudal B0.25% 1ml/kg | Intraop - haemodynamics Faces upto 2hrs Parent satisfaction + analgesia at home | No difference in any parameter | Caudal - ↑motor
block and PONV | 1+ | | Choi <i>et al.</i> (2003) | RCTDB
N=60
2-12yrs | EMLA 2-4g + Saline DNB
Vs
DNB B0.5% 0.2ml/kg +
placebo cream | Intraop – haemodynamics Cheops upto 6hrs Rescue analgesia (25%↑ haemo or score >5) – fentanyl + paracetamol | No difference in rescue analgesia either intra or postop. | No adverse effects | 1+ | | Gauntlett
(2003) | RCT
N=60
1-10yrs | DNB B0.5% (+aug)
Vs
Caudal B0.15% 0.5ml/kg +
Ketamine 0.5mg/kg | Parents OPS in hosp
and at home
Time to 1 st analgesia
(paracetamol) | No difference – time to 1 st dose, no of doses and pain scores | ↑ motor block
and time to mict
with caudal | 1+ | | Lee and
Sanders
(2000) | RCTDB
N=32
18mn – 12yr | Caudal 1ml/kg
R0.2% Vs R0.2% + ketamine
0.25mg/kg
(+Fent 1mcg/kg at indn both
gps) | Parent VAS Time to 1 st dose (4 on VAS) No of analgesics (paracet) | R+K - ↑ time to 1 st analgesia
- ↓ no of paracet doses in
24hrs | No diff –
sedation, motor
block,
micturition,
PONV | 1+ | | McGowan
et al.
(1998) | RCT
N=61
1-18yrs | 1. DNB B0.5%0.3ml/kg
2. DNB + Diclofenac pr 2-
2.5mg/kg
3. Diclofenac | CHEOPS upto 2hrs
Questionnaire at
home
Rescue analgesia –
morphine, paracet,
lig gel | 3 failed blocks Gp 3 ↑ pain score at 10min More paracetamol used (ns) Gp2 Less paracet over 2 days (ns) No difference – parental assessment | No difference
bleeding /PONV | 1+ | |--|------------------------------|---|--|---|---|--| | Matsota
and
Papageorgi
ou-Brousta
(2004) | RCT
N=30
3-12yrs | Subcutaneous RB L0.25%
Vs
Fent 2mcg/kg + paracet
30mg/kg | Intraop – haemodynamics 4pt pain scale for 24hrs Time to 1 st analgesia | ↑ Haemodynamic stability with RB
↑ post op analgesia with RB (ns) | | 1- | | Sharpe <i>et al.</i> (2001) | RCT
N=74
1-9yrs | Caudal 0.5ml/kg 1. B0.25% 2. B0.25% + clonidine 1mcg/kg 3. B0.25% + clonidine 2mcg/kg | Intraop – haemodynamics Pain score (own) upto 4hrs, time to 1 st analgesia, analgesic use | Trend toward ↑ time to 1 st analgesia with↑ clonidine dose (ns) Low analgesic use and no difference | No difference
sedation,
micturiton,
PONV (all low) | 1- | | Holder <i>et al.</i> (1997) | RCT
N=45
3-11yrs | RB B0.25%
Vs
DNB B0.5% 0.2ml/kg | OPS upto 1hr Rescue analgesia – morphine/paracetam ol /diclofenac | RB – 3 oedamatous - ↑ pain scores - ↑ morphine/paracet use | | 1- random
allocation of
rescue analgesia | | Serour <i>et al.</i> (1996) | RCT
N=250
6-17yrs | GA +DNB L2% + B0.5%
1ml/kg
Vs
DNB L2% + B0.5% 1ml/kg | Verbal Pain Score
(own)
Rescue analgesia | 4pts in DNB needed GA
GA group ↑ pain scores | GA - ↑ PONV
and recovery
time | 1- | | Irwin and
Cheng
(1996) | RCT
N=50
2-12yrs | Caudal
Vs
RB | Time to 1 st analgesia | Caudal - ↑time to 1 st analgesia
8% RB failure | Caudal - ↑ time
to micturition
No difference
motor block | 1- | | Taylor et al. (2003) | Open label
N=22
5-24mn | Caudal L0.25% 0.8ml/kg | Intraop – haemodynamics Time to 1 st analgesia – paracet 30mg/kg | All pts good intraop analgesia
Time to 1 st analgesia 7.9hrs | No adverse events | 2+ | | | | | po/pr | | | |------------|-------------|-----|-------|-----------------|---| | Soh et al. | Case series | DNB | | 9 complications | 3 | | (2003) | N=3009 | | | Rate of 0.18% | | | , , | 1mn – 16yrs | | | (excluding 2 | | | | | | | drug errors) | | INTERVENTION: Circumcision (neonates) | AUTHOR | DESIGN | TREATMENT | OUTCOME
MEASURE | RESULT & CONCLUSION | SIDE-EFFECT/
SECONDARY
OUTCOME &
CONCLUSION | EVIDENCE
GRADE /
COMMENTS | |------------------------------------|---|---|--|---|---|---------------------------------| | Brady-Fryer
et al. (2004) | Cochrane Review 35 Studies 1997 Newborns – term and preterm All RCT's | DNB and/or RB (19 studies) EMLA/Lignocaine cream (12) Sucrose (9) Paracetamol (2) Environment manipulation (3) Either intervention vs placebo or intervention vs intervention All Awake | Haemodynamic
s
Cry
Pain scoring:
NIPS, NFACS,
PIPP + others
Biochemistry | No study completely eliminated pain DNB, RB, EMLA, Lig > placebo DNB > RB > EMLA/Lig Sucrose, paracetamol, environment = placebo DNB – lower cortisol RB – oedema EMLA – results dependent on time of and success of aplication | No increased incidence of other side-effects with any procedure Using Mogen clamp ↓ duration of surgery | 1++ | | Lehr <i>et al.</i>
(2005) | RCT
N=54
Term, <1week | Lig 4% vs EMLA vs DNB
All Awake | Haemodynamic application, procedure, recovery | HR – no difference
RR – EMLA > Lig = DNB | 2 EMLA, 1 Lig –
local reaction | 1- | | Taeusch et al. (2002) | RCT
N=59
Term, neonate | DNB with lignocaine
Mogen clamp
Vs
Plastibell
All Awake | Length of procedure Behavioural score | Scores similar but: 70% DNB not fully effective 60% had "excessive" pain Plastibell procedure longer | Operators
preferred Mogen
Clamp | 1- | | Taddio <i>et al.</i> 1998) | Review 3 Studies 138 Neonates RCT`s | EMLA vs Placebo (2 studies) EMLA vs DNB vs RB vs placebo All Awake | NFACS
Haemodynamic
s, Crying | DNB =RB > EMLA > placebo | | 1- (no stats) | | Russell and
Chaseling
(1996) | Case series
N=208
Neonates to 7
mn | EMLA preop
All awake | Intraop
behaviour
Postop parent
questionnaire | Little crying during procedure >90% settled rapidly postop, fed immediately, little pain at rest or on urinating | No serious complications | 3 | | | Hypospadias repair | INTERVENTION: | |--|--------------------|---------------| |--|--------------------|---------------| | AUTHOR | DESIGN | TREATMENT | OUTCOME
MEASURE | RESULT & CONCLUSION | SIDE-EFFECT/
SECONDARY
OUTCOME &
CONCLUSION | EVIDENCE
GRADE /
COMMENT
S | |-------------------------------|--|--|---|---|---|-------------------------------------| | Mahajan et al. (2004) | RCTDB
N=80
2-8yrs | Caudal 0.5ml/kg B0.25% 1. Plain 2. + Neo 2mcg/kg 3. + Neo 3mcg/kg 4. +Neo 4mcg/kg | Intraop- Haemodynamics
OPS – if >3 the rescue
analgesia – Paracet
Time to 1 st Analgesia | ↑ time to 1 st analgesia and ↓ analgesic consumption in Gps 2, 3 and 4 | No difference
PONV, sedation,
motor block,
haemodynamics | 1+ | | De Negri <i>et al.</i> (2004) | RCTDB
N=90
2-6yrs
(9pts – failed
block or
change of
surgery) | Epidural – intraop all pts R0.2% bolus → R0.125% infn Post op – infn 0.2mg/kg/hr 1. L0.125% 2. R0.125% 3. B0.125% | CHIPPS Score 4hly
Score>4 rescue analgesia
Time to 1 st analgesia
Analgesic consumption | No difference in pain scores, no rescue analgesia | No adverse effects | 1+ | | Gunes <i>et al.</i> (2004) | RCT
N=134
1-3yrs | Caudal vs IV Tramadol 1. C 2mg/kg post surg 2. C 2mg/kg pre surg 3. IV 2mg/kg post surg 4. IV 2mg/kg pre surg | OPS (Broadman) upto
24hrs
Rescue analgesia – IV
pethidine 1mg/kg or
paracet 20mg.kg po | Duration of analgesia 1=2 >3=4 IV Peth: 0 gps 1& 2 but 30/34 gps 3 & 4 OPS↓ gps 1 & 2 at 3hrs | PONV: gp 1 6%
other gps 40% | 1+ | | Hansen <i>et al.</i> (2004) | RCTDB
N=46
2-8yrs
(2 exclusions
– change
surgery) | Caudal B0.25% 0.5ml/kg 1. + Clonidine 2mcg/kg C 2. + Clonidine 2mcg/kg IV Postop: P/NCA Morphine Bolus only (25ug/kg) and Paracet 20/kg 6hly po/pr |
Intraop – haemodynamics Pain score – Obsevational (0-3) every 3hrs Score >1 – rescue morphine Time to 1st analgesia | No difference time to 1 st analgesia, morphine use and pain scores (all low) | No difference
sedation, PONV or
motor block | 1+ | | Batra <i>et al.</i> (2003) | RCTDB
N=120
2-8yrs | Caudal 0.5ml/kg + adr
1:200,000
1. Neo 10mcg/kg | Intraop – haemodynamics
OPS score > 3 paracet 20
mg/kg po | Gp 1&6 No diff but sig ↓
duration analgesia
↑ duration of analgesia as | Gp 4 & 5 ↑ PONV
(upto 60%) | 1+ | | Ab dulatif and | DOT | 2. Neo 20mcg/kg
3. Neo 30mcg/kg
4. Neo 40mcg/kg
5. Neo 50mcg/kg
6. No Block | Time to 1 st analgesia | dose ↑ (sin & ns) Gp 4 & 5 ↓analgeic consumption Gp 1 & 6 max analgesic use | A DONN/ in our O. S. O. | | |--|---|---|---|--|---|----| | Abdulatif and
El-Sanabary
(2002) | RCT
N=60
2-10yrs | Caudal 1. B0.25% 1ml/kg 2. B0.25% 1ml/kg + Neo 2mcg/kg 3. saline + Neo 2mcg/kg | Intraop – haemodynamics
Pain score (0-10) – obs:
score >4 paracet 15/kg
Time to 1 st analgesia | Intraop – gp 3 ↑RR, insp
halothane
Time to 1 st analgesia ↑ gp 2
↑ paracet usage gp 3 > gp 1 >
gp 2 | ↑ PONV in gp 2 & 3
(~25%) | 1+ | | Ozbek <i>et al.</i> (2002) | RCTB
N=109
1-9yrs | Caudal 0.5ml/kg
1 Alfentanil 20mcg/kg
2 Ketamine 0.5mg/kg
3 Alfentanil 20mcg/kg +
Ketamine 0.5mg/kg | Intraop – haemodynamics
CHEOPS upto 24hrs
Score >= 7 paracet 15/kg
po
Time to 1 st analgesia | Duration of analgesia 3=2>1
1 st 6 hrs – no use of analgesics
and no difference pain scores
Post 6hrs – Patients needing
analgesia gp1 65% gp2 34%
and gp3 33% | PONV 4pts in each
group
No difference
mictn, motor,
haemodynaics
No psychomotor
effects | 1+ | | Prosser <i>et al.</i> (1997) | RCT
N=90
13-53mns | Caudal 0.8ml/kg
1. B0.25%
2. Tramadol 2mg/kg
3. B0.25% + Tramadol
2mg/kg | Intraop – haemodynamics
TPPPS – score >3
morphine 100mcg/kg or
paracet 20mg/kg | ↑ analgesic requirements and pain scores in gp 2 | ↑ PONV in gps 2 & 3 (ns) | 1+ | | Chhibber <i>et al.</i> (1997) | RCTB
N=99
6mn-12yrs
(2 exclusions
– surgical) | DNB B0.5% 1. 0.5ml/kg post surg 2. 0.5ml/kg pre surg 3. 0.25ml/kg pre & post surg | mOPS (0-6) at 15 min,
3,12 and 24hrs
Pain → paracet 15ml/kg | Pain scores; all times gp 3 < gp 1, at 3 & 12 hrs gp 3 < gp 2, at 15 min gp 2 < gp 1 ↓ paracet use in gp 3 after 3hrs | | 1+ | | Kelleher et al. (1996) | RCT
N=45
6mn-8yrs | Caudal B0.25% 0.5ml/kg
1. Plain
2. + diamorphine 30ug/kg | CHEOPS
Time to 1 st analgesia | | ↑ PONV gp 2 (ns) ↑ time to mictn gp 2 (ns – most pts had catheter) | 1+ | | Ozyuvaci et al. (2004) | RCT
N=60
3-12yrs | Caudal B0.25% 0.5ml/kg 1. + paracet 20-25mg/kg pr with C 2. C alone 3. + paracet 20-25mg/kg pr at end | CHEOPS upto 6hrs
Time to 1 st analgesia | No difference pain scores or time to 1 st analgesia | | 1- | |--------------------------|-------------------------------------|--|--|--|--------------------------|----| | De Mey et al. (2000) | RCTB
N=60
8mn-13yrs | Caudal B0.25% 0.5ml/kg 1. Plain 2. + 1mck/kg clonidine 3. + 0.5mcg/kg sufentanil 4. + 0.5mcg/kg C + 0.25mcg/kg S | VAS if >5yrs
CHEOPS if <5yrs
2hly upto 12hrs
Score >40 or 6 paracet IV
or PR | No difference pain scores or analgesic consumption | PONV – low in all groups | 1- | | Silvani et al.
(2006) | Not
Randomised
N=30
1-5yrs | Caudal R
1.0.375% 0.5ml/kg
2.0.1% 1.8ml/kg | CHEOPS
Time to 1 st analgesia | ↑ time to 1 st analgesia and ↓ motor block in low concentration high volume group | | 2- | INTERVENTION: Orchidopexy | AUTHOR | DESIGN | TREATMENT | OUTCOME
MEASURE | RESULT & CONCLUSION | SIDE-EFFECT/
SECONDARY
OUTCOME &
CONCLUSION | EVIDENCE
GRADE /
COMMENT
S | |------------------------------|--|--|---|---|--|-------------------------------------| | Verghese et al. (2002) | RCT
N=50
1-6yrs | Caudal B 2mg/kg + NaHCO3
0.1ml + Adr 1:400,000
1. 0.8ml/kg
2. 1ml/kg | Intraop-
haemodynamics
Analgesic
consumption | Response to cord traction Gp1 65% vs Gp2 30% 4 vs 2 pts needed rescue analgesia | No difference motor block | 1+ | | Findlow <i>et</i> al. (1997) | RCT
N=40
2-7yrs
(4 excluded
– 2no
surgery & 2
no follow
up) | Caudal B0.25% 1ml/kg + ketamine 0.5mg/kg Vs IL/IG NB B0.25% 0.5ml/kg + Infiln B0.25% 0.5ml/kg (at end) Diclofenac 1-2mg/kg PR (both gps) | Parental OPS – 24hrs Score>4 – paracet 15mg/kg po Time to 1 st analgesia and analgesic use | Time to 1 st analgesia ↑Gp1 (10 v
3hrs)
↓ analgesic use Gp1
Gp 2 14 vs Gp 1 7 - Needing 2 or
more analgesic doses | No difference
sedation, motor,
mictn, PONV (only 1
pt)
No psychomotor
effects | 1+ | | Semple <i>et al.</i> (1996) | RCT
N=60
1-9yrs | Caudal B0.25% 1ml/kg 1. Ketamine 0.25mg/kg 2. Ketamine 0.5mg/kg 3. Ketamine 1mg/kg | Parental OPS for
24hrs
Score>4 paracet
15mg/kg | ↑Time to 1 st analgesia with ↑ Ketamine – Gps 3 & 2 vs Gp 1 (sig) ↑ Analgesic requirement Gp1 vs Gp 3 (sig) and Gp 1 vs Gp 2 (ns) No difference pain scores up to 4hrs | No difference mictn,
motor, sedation
PONV ↑ with ↑
Ketanine but (ns)
Gp 3 - 7pts short
lived psychomotor
effects | 1+ | | Somri <i>et al.</i> (2002) | RCT
N=30
1-8yrs | Caudal B0.25% 1ml/kg
Vs
IL/IG NB B0.25% 0.5ml/kg +
Infiln B0.25% 0.25ml/kg (at
end) | CHEOPS upto 1hr
Score >5 – fent
1mcg/kg or paracet
15mg/kg
Stress Hormones | Gp 2 - ↑ pts needing fentanyl & more given (ns) No difference time to 1 st analgesia and paracet use | ↓Ad & Norad levels
in caudal group post
block insertion | 1- | | Johnston et al. (1999) | RCT
N=40
1-5yrs | Caudal 1ml/kg
1. B0.125% + 0.5mg/kg
Ketamine
2. B0.25% + 0.5mg/kg | Parental OPS for
24hrs
Score > 4 – paracet
15mg/kg po | Gp 2 ↑ time to 1 st analgesia – 9.5
vs 8 hrs (sig)
No difference in median No of
paracetamol doses (=2) | No difference motor block, mictn, eye opening No psychomotor | 1- | | | Ketamine | | effects | | |--|-------------------------|--|---------|--| | | Diclofenac 1mg/kg PR at | | | | | | induction (both groups) | | | | | INTERVENTION: | Inguinal Hernia | | | |---------------|-----------------|--|--| | AUTHOR | DESIGN | TREATMENT | OUTCOME
MEASURE | RESULT & CONCLUSION | SIDE-EFFECT/
SECONDARY
OUTCOME &
CONCLUSION | EVIDENCE
GRADE /
COMMENT
S | |------------------------------|--------------------------|---|--|---|--|-------------------------------------| | Yildiz et
al (2006) | RCT
N=60
1-10yrs | Caudal B0.125% 1ml/kg 1. Plain 2. + Clonidine 1mcg/kg 3. + Clonidine 1.5mcg/kg 4. + Clonidine 2 mcg/kg | Intraop – haemodynamiccs
mCHEOPs or VAS
painscale.
Paracetamol if mCHEOPS
> 5 or VAS > 30mm
Time to 1 st analgesia | ↑ Time to 1 st anangesia with clonidine 2mcg/kg | No ↑ in side-effects with ↑clonidine dose | 1+ | | Kumar et al. (2005) | RCTDB
N=80
5-10yrs | Caudal B0.25% 1ml/kg 1. Plain 2. + Midaz 50mcg/kg 3. + Ketamine 0.5mg/kg 4. + Neo 2mcg/kg | Intraop – haemodynamiccs
5pt Verbal pain score for
24hrs
Score>5 paracet 20mg/kg
po
Time to 1 st analgesia | Time to 1 st anangesia:
Gp 2 = Gp4 > Gp3 > Gp1 (sig) | No difference PONV, sedation, neurological outcome, motor block 2pts with ketamine had hallucinations | 1+ | | Panjabi
et al.
(2004) | RCT
N=60
6mn-10yrs | Caudal B0.25% 0.75ml/kg
1. + Ketamine 0.25mg/kg
2. + Ketamine 0.5mg/kg
3. + Ketamine 1mg/kg | Intraop – haemodynamics
AIIMS pain scale up to
24hrs
Score>4 peth IM 1mg/kg
Time to 1 st analgesia | Time to 1 st anangesia:
Gp 2 = Gp3 > Gp1 (sig)
Supplementary analgesics – Gp1
90%, Gp 2 20% and Gp 3 0% | No difference
sedation, motor
block, mictn, PONV
Behaviour effects
Gp3 9, Gp2 1 and
Gp1 0 | 1+ | |
Machotta
et al.
(2003) | RCT
N=58
0-5yrs | Infiltration B0.5% 0.2ml/kg
post surg
Vs
Caudal B0.25% 1ml/kg | OPS upto 24hrs
Score>5 – piritramide
0.05mg/kg iv, paracet upto
100mg/kg/day | No difference use piritramide in recovery (11 vs 8) or paracet use on ward (10 vs 7) No difference pain scores at any time except 2hrs when lower with caudal | | 1+ | | Memis <i>et al.</i> (2003) | RCTB
N=45
1-5yrs
(2
exclusions
– analgesia
for other
reason) | Caudal B0.25% 0.5ml/kg
1. Plain
2. +Neo 1mcg/kg | Intraop – haemodynamics
TPPPS score upto 24hrs
Score>3 paracet 20mg/kg
pr | No difference duration of block
(15hrs – wide variation), those not
needing any rescue (14 vs 15) | No difference PONV (1 vs 3), sedation, motor, haemodynamics | 1+ | |------------------------------|---|--|---|---|---|------------------------| | Baris <i>et al.</i> (2003) | RCTDB
N=78
6mn-6yrs | Caudal B0.25% 0.75ml/kg
1. + fent 1mcg/kg
2. + midaz 50mcg/kg
3. plain | Intraop – haemodynamics
CHEOPS for 24 hrs
Score>5 paracet 20mg/kg
pr | No difference pain scores (all low) or analgesic use (7 vs 8 vs 5) | No difference mictn,
motor, PONV (low)
or haemodynaics | 1+ | | Ozcengiz
et al.
(2001) | RCTDB
N=120
4-10yrs
(4
exclusions
Unable to
place
block) | Caudal 0.5ml/kg 1. Tramadol 2mg/kg pre surg 2. Morphine 30mcg/kg pre surg 3. Morphine 30mcg/kg post surg | Intraop – haemodynamics
OPS upto 24hrs
Score>5 morph 0.1mg/kg
IM | >90% pts in all gps – no further
medication
8pts needed morphine (3 vs 3 vs
2) | No diff
haemodynamics,
PONV, sedation,
puritis
↑ sevo use gp3 | 1+ | | Koinig <i>et al.</i> (2000) | RCTDB
N=42
1-7yrs | Caudal S-Ket 1mg/kg
Vs
IM S-Ket 1mg/kg | Intraop – haemodynamics OPS upto 24hrs Score>11 paracet 20mg/kg pr Time to 1 st analgesia | Time to 1 st analgesia - ↑ caudal
Analgesic use 12/22 caudal vs
18/20 IM (sig)
↓pain scores caudal at 75 &
90min | No difference sedation, mictn, haemodynamics | 1+ | | Marhofer
et al.
(2000) | RCTDB
N=49
3mn-6yr | Caudal 0.75ml/kg
1. B0.25% + Adr 1:200,000
2. S-Ket 0.5mg/kg
3. S-Ket 1mg/kg | Intraop- haemodynamics OPS up to 6hrs Score>11 paracet 30mg/kg/pr | Time to 1 st analgesia Gp1 =Gp3
>Gp2
Analgesic use Gp1 30% = Gp3
33% < Gp2 72% | No difference haemodynamics, sedation, mictn | 1+
But only
6hrs | | Gaitini et al. (2000) | RCTB
N=60
1-8yrs | Caudal B0.25% 1ml/kg
1. Plain
2. + Fent 1mcg/kg | Intraop – haemodynamics
CHEOPS upto 12hrs
Score>5 fent1mcg/kg or
paracet 15mg/kg po
Time to 1 st analgesia | No difference - time to 1 st analgesia or pain scores (lower in gp2 but ns) Rescue analgesia – fent 5 vs 6, paracet 14 vs 12 | No difference PONV (3vs4), sedation, catecholamine levels | 1+ | | Koinig <i>et al.</i> (1999) | RCTDB
N=57
1.5-7yrs | Caudal 0.75ml/kg
1. B0.25%
2. R0.25%
3. R0.5% | Intraop- haemodynamics OPS up to 24hrs Score>11 paracet 20mg/kg pr Time to 1 st analgesia | Time to 1 st analgesia Gp3 > Gp1=Gp2 (large diff) Analgesic use Gp3 < Gp1=Gp2 Pain scores at 3,4hrs Gp3 < Gp1=Gp2 | Time to mictn, standing ↑ Gp3 | 1+ | |--------------------------------|---------------------------|---|---|---|--|----| | Kundra <i>et al.</i> (1998) | RCTDB
N=60
9mn-12yr | Caudal B0.25% 0.66ml/kg
+ Morphine 0.02mg/kg
1. 15min pre incision
2. Post surgery | Intrao – phaemodynamics OPS up to 24hrs Score>=5 morphine 0.1mg/kg IM Analgesic use | OPS ↓ in Gp1 at all times (sig at 0.5, 4 & 8hrs) Time to 1 st analgesia ↓ Gp1 Morphine use ↑ Gp2 | No difference PONV | 1+ | | Klimscha <i>et al.</i> (1998) | RCTDB
N=58
6mn-6yr | Caudal B0.25% 0.75ml/kg
1. Plain
2. +3.75mcg/kg Adr
3. +1mcg/kg Clon
4. +2mcg/kg Clon
5. Placebo | Intraop – haemodynamics
OPS upto 24hrs
Score>11 paracet 15mg/kg
pr
Time to 1 st analgesia | In 1 st 6hrs – Time to 1 st analgesia: gp3=gp4 > gp1=gp2 > gp5 Analgesic use: all in gp5, gp3=gp4 < gp1=gp2 18hrs at home: Analgesic use: gp3=gp4 < gp1=gp2=gp5 | No difference PONV, motor | 1+ | | Naja et
al. (2005) | RCT
N=50
5-12yr | GA/PVB – mixture Lig2% +
Lig2% with Adr 1;200,000 +
Fent + Clonidine
Vs
GA/Fentanyl | Intraop – haemodynamics
VAS score – nurses then
parents upto 48hrs
Score>5 - tramadol,
paracet if child/parent
request | GA/PVB – stable haemodynamics intraop, lower pain scores | PVB – leave hosp
earlier, ↑ surgeon
and parent
satisfaction | 1- | | Sasaoka
et al.
(2005) | RCT
N=100
6mn-10yr | II/IG NB B0.25% 0.75ml/kg
1. Alone
2. + GenitoFem NB B0.25%
0.375ml/kg | Intraop – haemodynamics
Pain score (?) upto 5hrs
Rescue – Diclofenac
1mg/kg pr | ↓ HR/BP on sac traction in Gp2 No difference pain scores and rescue analgesia | | 1- | | Sakellaris
et al.
(2004) | RCT
N=45
6-10yrs | Infiltration R0.5% 0.25ml/kg 1. Pre surg 2. Post surg 3. No infiltration | OPS Paracet on demand Cortisol/prolactin levels | Time to pain score=0 ↓Gps 1 & 2 | Gp 3 - ↑ postop
cortisol and prolactin
levels | 1- | | Gunes et al. (2004) | RCTDB
N=99 | Caudal 0.5ml/kg
1. R2mg/kg | Introp – haemodynamics
CHEOPS then parental | Time to 1 st analgesia:
Gp3 > Gp2 > Gp1 (ns 16-23hrs) | PONV Gp1 (1) > Gp2
= Gp3 (7,8) | 1- | | | 1-10yrs | 2. R1mg/kg + Ketamine
0.25mg/kg
3. R1mg/kg + tramadol
1mg/kg | assessment up to 24hrs
Score>7 paracet 15/kg po
Time to 1 st analgesia | Gp3 > Gp1 (sig)
Analgesic use Gp1 = Gp2 (14, 11)
> Gp3 (3) | No difference motor, haemodynamics, sedation | | |-----------------------------------|---|--|--|--|---|----| | Tsuchiya et al. (2004) | RCTB
N=30
1-8yrs | IL/IG NB 0.5ml/kg
1. R0.2%
2. B0.25%
3. Lig1% | FACES by parents at 2 & 6hrs Pain – paracet 50 – 100mg pr | Pain scores at 2 & 6hrs Gp3 > Gp1=Gp2 Analgesic use Gp1 1, Gp2 1, Gp3 3 (ns) | No PONV, motor | 1- | | Schrock
and
Jones
(2003) | RCTB
N=54
1-6yr | Caudal B0.175% + Adr
1:200,000
1. 0.7ml/kg
2. 1ml/kg
3. 1.3ml/kg
Paracet 30mg/kg PR indn
(all gps) | CHEOPS in hosp, Parental VAS at home up to 24hrs Time to 1 st analgesia Rescue analgesia – fent, oxycodone (hosp) paracet, codeine (home) | No difference Time to 1 st analgesia (3.5-5hrs) CHEOPS no difference and low Recovery analgesia – 4 vs 3 vs 1 (ns) 36 pts analgesed at home – no diff between gps and no consistency with parental decision | No difference mictn, motor | 1- | | Hager et al. (2002) | RCTB
N=53
1-72mn | Caudal 0.75ml/kg 1. Ket 1mg/kg 2. Ket 1mg/kg + Clon 1mcg/kg 3. Ket 1mg/kg + Clon 2mcg/kg | Intraop – haemodynamics OPS up to 24 hrs Score>11 paracet 30mg/kg pr Time to 1 st analgesia | Time to 1 st analgesia – Gp2=Gp3>Gp1 Analgesic requirement – Gp2=Gp3 > Gp1 (16% vs 63%) | No difference mictn,
haemodynamics
No adverse effects | 1- | | Lim <i>et al.</i> (2002) | RCT
N=90
2-12yrs
(5
exclusion
Failure
tech, poor
anat, data
lost) | IL/IG NB B0.25% 0.25ml/kg 1. Single shot 2. Double shot Post discharge paracet 10mg/kg po 6hourly (both gps) | Intraop – haemodynamics
mCHEOPS up to 24hrs
score4-5 paracet 15mg/kg
po
score 6 paracet + fent
1mcg/kg | Success rate 72% (both gps) No difference analgesic use 50% children pain in 24hr period | | 1- | | Senel <i>et al.</i> (2001) | RCT
N=60
1-7yrs | Caudal 1ml/kg
1. B0.25%
2. B0.25% + Tramadol | Intraop – haemodynamics
3pt pain scale up to 24hrs
Score>1 paracet 10mg/kg | Time to 1 st analgesia gp2 (13.5hr) > gp1 (9.8) > gp3 (4.7) (sig) Gp3 - ↑ rescue analgesia + pain | No difference RR,
sedation, PONV
(low), mictn, motor | 1- | | | | 1.5mg/kg
3. Tramadol 1.5mg/kg | pr
Time to 1 st analgesia | scores at 4 & 6hrs | | | |--------------------------------------|----------------------------------|--|--|---
--------------------------------|----| | Hashizu
me et al.
(2001) | RCT
N=60
1-5yrs | Caudal 1mg/kg 1. Mepivacaine 1% 2. B0.25% 3. M 1% + B0.25% (50:50) | OPS up to 24hrs
Score>3 paracet 20mg/kg
pr | Low use of postop analgesia 4 vs 0 vs 0 | | 1- | | Joshi <i>et</i>
<i>al.</i> (1999) | RCT
N=56
6mn-6yrs | Caudal 1ml/kg + Adr
1:200,00
1. B0.125%
2. B0.125% + Fent 1mcg/kg
3. B0.25%
4. B0.25% + Fent 1mcg/kg | OPS in recovery VAS at home by parent or child Rescue paracet/codeine | No difference pain scores,
analgesics at home
21% pts received IV fent (?when
and why) – more in Gp1 | | 1- | | Splinter
et al.
(1997) | RCTB
N=164
2-6yr | Infiltration + direct vision IL/IG NB B0.25% 0.2ml/kg (surgeon) 1. Caudal B0.2% 1ml/kg + Adr 1:200,000 2. Ketorolac IV 1mg/kg | mCHEOPS up to 24hrs
score>5 morphine
50mck/kg or paracet 15/kg
or codeine 1mg/kg | No difference pain scores in recovery ↓pain scores at home Gp2 Up to 2 hrs – paracet (59 vs 61) and codeine (56 vs 50) use no difference | PONV, motor and mictn all ↓Gp2 | 1- | | Dahl <i>et al.</i> (1996) | RCTDB
N=50
2-10yr | Infiltration 1. B0.25% 1ml/kg pre + saline post 2. Saline pre + B0.25% 1ml/kg post Paracet 15-20mg/kg pr on admission to recovery (both gps) | OPS + questionnaire | ↓score at 30min Gp1
No difference post op analgesia
Postop opioids 54% vs 45% | | 1- | | Taylor et al. (2003) | Open label
N=27
5-24mn | Caudal L0.25% 0.8ml/kg | Intraop – haemodynamics
Time to 1 st analgesia –
paracet 30mg/kg po/pr | 22/27 pts good intraop analgesia
Time to 1 st analgesia 7.34hrs | No adverse events | 2+ | | Kokki <i>et</i>
<i>al.</i> (2000) | Open label
N=190
6mn-10yrs | Spinal B0.5% 0.3-0.4mg/kg
+ IL?IG NB B at end of
procudre
+ either ketoprofen 2mg/kg
IV or Ibuprofen 10mg/kg pr
or paracet 40mg/kg pr | Maunuksela pain scale
Score>3 rest or >5 activity
fent 1mcg/kg
Parent questionnaire | 183 successful – 2 GA, 7 sedation
28% fentanyl in recovery
83% pain at home (17%mod,
2%severe)
85% analgesia at home, median 4
doses | 7% PONV
6% headache | 2+ | | Brindley | Retrospecti | Awake | All successfully reduced | No adverse events | 3 | |------------|-------------|----------------------|--------------------------|-------------------|---| | et al. | ve review | Cuadal B0.25% 1ml/kg | | | | | (2005) | N=12 | _ | | | | | incarcerat | 2-17wk | | | | | | ed hernia | | | | | | ### INTERVENTION Fundoplication | AUTHOR | DESIGN | TREATMENT | OUTCOME
MEASURE | RESULT & CONCLUSION | SIDE-EFFECT/
SECONDARY
OUTCOME &
CONCLUSION | EVIDENCE GRADE /
COMMENTS | |------------------|---|--|--|---|---|--| | Lejus
(2001) | Prospective evaluation of epidural over 6 years. N=348 (307 children 12 days to 18 years, median 72 months) | Bupivacaine (mean concentration 0.185%)and Fentanyl (5ug/kg/day). Different types of surgery including fundoplication. | Hourly pain scores
(Krane et al)
Global pain index | Combination provides safe analgesia | Urinary retention
17%
N & V 14%
Pruritus 0.6% | 3
prospective but not
analytical | | Wilson
(2001) | Retrospective
review
Non random
allocation
N=104 (65
epidural, 39
infusion) | Epidural
(bupivacaine/fentanyl mixture
0.125% at 0.4ml/kg/hr) v
morphine infusion (10-
40ug/kg/hr) | Hourly Pain
measurements
routinely performed.
Need and duration
of icu stay.
Hospital stay
M & M | Hospital stay greater for opioid group (13 v 8) | Mean duration of
stay higher in
opioid group.
Patients in
hospital more
than 7 days
higher in opioid
group | 3
case series | | Dick
(1998) | Prospective non randomised (but blinded for data collection) N= 40 (20 open, 20 lap) | Assessment of morphine usage post op | Duration and amount of morphine given. Linear pain scale | Equal amounts of morphine given (0.432+/-0.28, o.427+/- 0.28 mg/kg) More morphine required day 1 for lap procedure (0.399 +/- 0.19 v 0.22 +/-0.11. p< 0.03) But shorter time in lap group 1.2+/-0.46, 2.7+/- 0.67 days p<0.02. Similar amounts of NSAID given | 3 | 2- non randomised. no primary end point or calculation of power. Different surgeons performed open and lap procedures. | | Brenn
(1998) | Prospective data acquisition. non-randomised 92 patients Mean age 107 months Orthopaedic and upper GI surgery | First 44 - bolus epidural morphine (caudal or lumbar) Subsequent 48 - post op continuos bupivicaine (0.2 - 0.5 ml/kg/hr 0.1%) and fentanyl (2mcg/ml) | CHEOPS used for analgesia. Incidence of complications. Comparison of di and quadroplegia | Vomiting seen more in diplegic group (p<0.01) Pruritus higher in diplegic group (p<0.0002) Neither of above related to mode of analgesia. Incidence of sedation higher in bolus group (p<0.01) | Bupivicaine and fentanyl better than opioid | 3 non randomised | |-------------------|---|---|--|--|---|--| | Rowney
(2000) | Retrospective
review
N=51
Laparoscopic
Nissen
Median age 6yrs
(5 months – 20
yrs) | Multi modal technique Port infiltration with 0.25% bupiv + 1 in 200 000 adrenaline Intra op fentanyl (2mcg/kg/hr) +rectal NSAID (34 patients) and rectal para (36 patients). Morphine infusion (first 4 patients). IM morphine 100mcg/kg given at end of surgery (24 patients). IM codeine (1mg/kg) in 20 patients. | No formal pain scores or charting. Assessment by nurses and anaesthetists | No post op analgesia required in 34 patients after 24hrs. No post op analgesia required in 45 patients after 48hrs. | | 3 not analytical. no historical control. | | Mcneely
(1997) | Retrospective
review
N=155
1 month to 19
years
elective open
fundoplication | bolus iv morphine N=91 (0.05 – 0.1mg/kg 1-2 hrly) v epidural N=72 (0.25% bupiv intra-op + fentanyl or morphine with 0.0625 – 0.125% bupiv | Post op course
(analgesic efficacy,
complications,
hospital stay, cost)
Pain via VAS or
observational scale
(Oucher) | Decrease complications in epidural group (decrease ventilation (P<0.01), shorter hospital stay (P<0.01), cheaper (P<0.01)) | | 3 not analytical.
only patients in
epidural group
managed by specific
pain service | # INTERVENTION Appendicectomy | AUTHOR | DESIGN | TREATMENT | OUTCOME
MEASURE | RESULT & CONCLUSION | SIDE-EFFECT/
SECONDARY
OUTCOME &
CONCLUSION | EVIDENCE
GRADE /
COMMENTS | |------------------|--|--|---|--|--|--| | Jensen
(2004) | DB RCT
N = 68 | B O.25% or 0.5% (>40kg<)
or placebo
0.5 ml/kg sub cut | Morphine usage in first 24 hours | B 0.065mg/kg
P 0.073mg/kg
Ns | B group
experienced
longer pain relief
(ns) | 1+ | | Yildiz
(2003) | RCT non
blinded
N= 40 (20 in
each group)
Age range 6 –
15 | pethidine load (0.3 mg/kg
then 150mcg/kg bolus iv.
Pethidine load (0.3mg/kg
then 75mcg/kg bolus +
15mcg/kg/hour background
Lock out 20 mins in both | Pain Sedatiuon
nausea in first 24
hours (4 point scale
for each) | No difference between groups
Background group had lower
peth consumption in first 24
hours (p<0.01) | No significant side effects | 1-
no specific end
point or power
calculation | | Dix
(2003) | RCT non
blinded
N=75
Age 7-16 years | All had pca morphine + para +NSAID a) saline infusion b) Ketamine 500mcg/kg iv iv pre incision + saline infusion c) Ketamine 500mcg/kg iv iv pre incision + ket infusion 4mcg/kg/min postop | Primary - Morphine
consumption at
24hrs
Secondary - Rescue
analgesia
Side
effects
Satisfaction scores | No difference in morphine consumption in the groups Ket infusion required more doses of rescue and reported more side effects (hallucinations) | | 1+
envelope
randomisation. | | Munro
(2002) | RDBT
N=60 (53
completed)
5 – 13 years | Control (no intra or post op antiemetic) Ondansetron 0.1mg/kg (intra op + added to post op PCA) Droperidol 0/01mg/kg (intra op + added to post op PCA) All had morphine PCA (20mcg/kg bolus at 5 min lock out with background of | Pain (method not
stated)
Nausea
Vomiting
Sedation
First 24 hours | No sig difference in PONV and sedation scores | | 1-
unclear power
calculation.
low group
numbers. | | | | 4mcg/kg/hour) | | | | | |------------------|--|---|--|---|---|---| | Wright
(2001) | DBRCT
N=60 (52
completed) | Wound infiltration
Either bupivicaine or placebo | Post op pain
assessed by child,
recovery sister, ward
sister
Time to first narcotic
injection | Significant decrease in pain in bupivicaine group | | 1+
sample size
seems low | | Morton
(1999) | RCT non
blinded
N=80 (20 in
each group)
5-13 years | Pca morphine 20mcg/kg bolus then 4mcg/kg/hr background for 12 hrs. Morphine + diclo 1mg/kg 8hrly. Morphine + para 15-20mg/kg 6hrly. Morphine + diclo and para. All had wound infiltration with 0.25% bupiv 1mg/kg | Morphine consumption Analgesia (3 point pain score) 3 point nausea score 3 point sedation score | Morphine consumption reduced by diclo (p<0.0033 for MD and p<00.28 for MDP). Para not additive (P<0.144). | Analgesia effect significantly improved by diclo despite lower morphine consumption | 1+
Equal in groups
Duration of pca
equal | | Habre
(1999) | Case report
N=2(10 and 8
yrs) | Addition of droperidol to morphine infusion Doses 0.14mg/kg and 0.17mg/kg | Symptoms at 38 and 27 hours | Extrapyramidal side effects | | 3 | # INTERVENTION Laparoscopy | AUTHOR | DESIGN | TREATMENT | OUTCOME
MEASURE | RESULT & CONCLUSION | SIDE-EFFECT/
SECONDARY
OUTCOME &
CONCLUSION | EVIDENCE
GRADE /
COMMENTS | |------------------|---|--|---|-------------------------------------|--|---| | Borkar
(2005) | Randomisd non
blinded
N=50
3 – 13 years.
laparoscopic
procedures | caudal Bupivacaine 0.2% 1mg/kg diclo supp 3mg/kg + Bupivacaine 0.5% port site infiltration at end of procedure | Hannallah objective
PS
15,30,60,120 and
360 mins | Comparable pain scores at all times | 12% G1 and
20% G2
required rescue
(ns) | no power calc.
no mention of
randomisation
method. | ### INTERVENTION Abdominal surgery | AUTHOR | DESIGN | TREATMENT | OUTCOME
MEASURE | RESULT & CONCLUSION | SIDE-EFFECT/
SECONDARY
OUTCOME &
CONCLUSION | EVIDENCE
GRADE /
COMMENTS | |---------------------|---|--|---|--|--|---| | Leoni
(2004) | RCT
N=82
0-8 YEARS
MINOR ABDO
AND
UROLOGICAL | 28 – alfent 25mcg/kg iv.
24 - periph nerve blockade
with ropivacaine 0.475%
1ml/kg.
30 – 12.5 mcg/kg alfent iv +
periph nerve blockade with
ropivacaine 0.475% 1ml/kg. | Intra op bp and pulse
Post op FLACC obs
tool + numerical
scale done by nurses
docs, parents and
children | No difference intra or post op efficacy | No differences | 1-
no power calc.
unequal groups
suggests poor
randomisation
technique | | Klamt
(2003) | RCT
N=40
3-98 months
MAJOR ABDO
SURGERY | 24hr epidural clonidine (1mcg/ml at rate of 0.2ml/kg/hour with pre bolus of 2mcg/kg) or clonidine (1mcg/ml and ropivacaine 0.1% at rate of 0.2ml/kg/hour both got ketoprofen 2mg/kg every 8 hours breakthrough got tramadol 1mg/kg | Tramadol
requirement
Sedation
Resp and
haemodynamic
changes | 77% (clon) and 59.3% clon + ropiv) required no or one dose of tramadol | Sedation and decrease bp after clonidine bolus | 1-
no power calc | | Cucchario
(2003) | RCT
N=26
3-12 YEARS
Major Gl/urology | EPIDURAL Ropivacaine 0.25% bolus (2.5 mg/kg) M (14) 0.08% Ropivacaine + 10mcg/ml morphine infusion C (12) 0.08% Ropivacaine+ 0.6mcg/ml clonidine | Pain (broadman/
VAS)
Rescue
Side effects | Vomiting and pruritus higher in M Pain sig higher in C group | | 1-
power calc not
based on
hypothesis | | Ganidagli
(2003) | RCT DB
N=60
Abdominal | Ramifentanil (1mcg/kg load
then 0.25mcg/kg/min iv)
Alfentanil (50mcg/kg load | End of anaesthesia to extubate. Verbal response | Time to extubate and time in recovery sig shorter in ramifentanil group. | | 1-
demographics of
groups different | | | surgery | then 1mcg/kg/min) Combined with propofol 3 rates + mivacurium | Recovery of ventilation Orientation Time to discharge from recovery | Quality of recovery higher in ramifentanil group. | | (not statistically
analysed in
paper) | |--------------------|---|--|--|--|---|---| | Kiffer
(2001) | RCT DB
N=21
Mean age 12
Major abdominal
and orthopaedic | Midaz pre med (rectal 0.3mg/kg) Epidural (n=11) 30mcg/kg bolus injection Placebo (n=10) no puncture but dressing in same spot as epidural All had PCA morphine + iv proparacetamol | Pain (VAS). Morphine consumption. Side effects. | VAS score and morphine requirements were claimed to be smaller in epidural group Opioid side effects similar in both | | 1-
numbers required
not achieved.
Flawed power
calc
statistically
flawed. | | Peters
(1999) | RCT
N=47
5-18 YEARS
Major abdo or
spinal surgery | PCA (Morphine) 15mcg/kg/hour + bolus of 15mcg/kg –lock out 10min CI (Morphine) 20 to 40 mcg/kg h | Analgesia (self
reporting every 3
hours via VAS)
Morphine needs
Side effects | Morphine consumption SIG higher in PCA No difference in pain scores | No difference in side effects | 1+ Multimodal technique not used. High incidence of moderate to severe pain scores. | | Chabas
(1998) | RCT non blind
Uro abdo
surgery
N=30
6-16 yrs | Epidural morphine 50ug/kg
Im morphine 100uk/gh 4-5
hrly | Pain (Andersen) FVC and FEV 1 6 hours post op and every day for next 7 days | No sig difference in groups | Significant improvement in quality of analgesia and decrease morphine given in epidural group | 1-
no power calc | | Moriarty
(1997) | Prospective data collection. Non randomised N = 35 | Ropivacaine (0.8 –
1.6mg/kg/4hr period) in
epidurals
Major abdominal and | Hourly -
Pain
Sedation
Nausea | 0.2% ropiv epidural solution inadequate alone. | | 3
Letter | | | Ages not stated | thoracic surgery | Methods not stated. | | | | |--------------------|---|--|---|--|---|------------------------------------| | Kart
(1996) | Prospective
Descriptive
Non randomised
N=59
3-15 yrs | Anaesthesia and analgesia regime not standardised | Pain (Poker Chip
Tool) at 1.5 hrs, 3hrs,
24 and 48 hrs post
op
Sedation (5 point
scale)
Pruritus and nausea
(4 point scale) | Only 37% of children received
acceptable post-operative analgesia | No best
management
suggested by
paper | 3
descriptive only | | Lerman
(2003) | Prospective RCT N=114 6 months – 12yrs major lower abdominal and urological surgery (hypospadias). | Epidural infusion. Lbupivacaine loading dose for all children. N=27 0.125% Lbupivcaine N=29 0.0625% Lbupivacaine N=30 1μg/ml fentanyl N=28 0.0625% Lbupivacaine and 1μg/ml fentanyl | CHEOPS every 10 mins in first hour, hourly for next 8 hrs then at 16 and 24 hrs. Proportion of children needing morphine rescue in first 10 hrs after infusion commenced. | No difference between groups for primary end point. Conclude epidural Lbupiv alone (0.0625%) is effective as a perioperative analgesic epidural solution | Sig difference in one secondary end point (p<0.0044 – time to first rescue dose shorter for fentanyl compared to fent and Lbupiv). Equal side effects in groups | 1+. | | Moriarty
(1999) | Retrospective N=227 Age not stated Major abdominal, urological (small number of thoracic and orthopaedic) | Epidural infusion First 72 – 0.125% bupivacaine + diamorphine 20µg/ml Next 200 - ropivacaine solutions (0.2 – 0.6 mg/kg/hr) | 5 point VAS score
(faces) hourly
3 point sedation
score | Lower incidence of nausea, pruritus, urinary retention and were less sedated in ropivacaine group (for comparable analgesia) | | 3
descriptive
non randomised | | Monitto
(2000) | Prospective,
non
randomised.
N=212 (240 | Intravenous infusion
monitored by nurse or parent
(PNCA)
Morphine, fentanyl or | Pain assessed by objective 6 point scale, objective 11 point scale or wong | PNCA provides effective analgesia for children under 6. | 1.7% incidence
of apnoea
vomiting 24%
pruritus 14% | 3
descriptive only | | | treatment episodes) Mean age 2.3 yrs Post operative pain – most common abdominal (and some painful medical conditions) | hydromorphone | baker face scale. | | | | |-------------------------|--|---|--|---|--|---| | Rosenber
g
(2005) | Prospective,
non randomised
N=45
Age 0-362 days
(over 2.5kg)
Major abdominal
or thoracic
surgery | Epidural infusion Bolus of 0.9 – 2.0mg/kg of ropivacaine o.2% followed by 0.2mg/kg/hr ropivacaine (infants <180 days) or 0.4mg/hr ropivacaine (infants >180 days) | Four point descriptive scale and OPS. Every 2 hours for first 8 then at 0600, 1200 and 1800 while infusion was running | Primary – evaluate pharmacokinetics Levels of unbound ropivacaine higher in neonates than infants but still below threshold levels for CNS toxicity in adults. Advised caution during first week of life. | Secondary – efficacy and safety Produced satisfactory pain relief | 3
non analytical | | Van Dijk
(2002) | Prospective
RCT
N=181
Age 0-3 years
Major abdominal
or thoracic
surgery | Continuous morphine (CM) infusion versus morphine bolus (IM) 10µg/kg/hr in fusion or 30µg/kg IM every 3 hours | COMFORT
behaviour (alertness,
calmness, muscle
tone, movement,
facial tension and
respiratory response
or crying).
VAS (0-10)
3hrly during first 36
hours | No significant difference
between groups
Regimes effective for 29% of
CM and 35% of IM
Higher pain response in infants
over 4 weeks. | No pruritus or
N&V seen in
any patients | no power calculation. Primary and secondary end points not stated. Chosen regimes ineffective (poor design) | | Birmingham
(2003) | Prospective
Non randomised
N=128 (132
procedures) | Patient controlled Epidural analgesia PCEA. Solutions include: Bupivacaine 0.1% (0.0625- | Pain by numeric rating score (0-10)and wong baker (0-5) | Showed PCEA effective in children as young as 5 with out toxicity or serious side effects | N&V 18.2%
Abnormal leg
neurology
17.4% | 3
not analytical | | Age 5-18 | 0.125) with fentanyl 5μg/ml | Exact frequency not | Pruritus 11.4% | | |--------------|------------------------------|---------------------|-------------------|--| | Major | (2-10) was commonest | stated | Urinary retention | | | procedures | solution. | Outcome not stated | 13.3% (89% | | | including | Ropivacaine 0.2% was also | (intended to show | already had | | | laparotomy, | used with fentanyl 3-5µg/ml. | efficacy of PCEA) | urinary | | | orthopaedic, | Hydromorphone and | | catheters in | | | thoracic and | morphine were used for one | | place) | | | urological | case each. | | 10% conversion | | | surgery | | | to IV PCA. | | ### **INTERVENTION** Pyloromyotomy | AUTHOR | DESIGN | TREATMENT | OUTCOME
MEASURE | RESULT & CONCLUSION | SIDE-EFFECT/
SECONDARY
OUTCOME &
CONCLUSION | EVIDENCE
GRADE /
COMMENTS | |-----------------|------------------------|---|-----------------------------------|--|--|---------------------------------| | Habre
(1999) | Retrospective
N= 72 | Wound infiltration with B (mean dose 2.16 +/-1.43 mg/kg | Timing of first post op analgesia | Paracet (mean 20mg/kg)
administered after 9.12 +/-8.04 h
3 required post op opioid | | 3 | INTERVENTION: Orthopaedics – lower limb surgery | AUTHOR | DESIGN | TREATMENT | OUTCOME
MEASURE | RESULT & CONCLUSION | SIDE-EFFECT/
SECONDARY
OUTCOME &
CONCLUSION | EVIDENCE
GRADE /
COMMENTS | |--------------------|--|---|---|--|---|---------------------------------| | Hiller
(2006) | DB RCT N=120 1-9 yrs (Soft tissue or orthopaedic) (11 exclusions from final analysis) | Gp1: Paracetamol 60mg/kg pr & 40mg/kg orally 8h post op Gp2: Ketoprofen 2mg/kg IV at induction & 8h post op Gp3: Both drugs | Morphine consumption OPS (0-9) for 24 h; Every 10 minutes for 2 hours, then hourly for 22 h Plasma drug concentrations at 4 hours N&V, antiemetic use, retention pruritus | Cumulative morphine requirement less Gp3 by 30%. Difference SS Gp 1 vs Gp3 but not Gp2 vs Gp3 Mean time to 1 st morphine Gp3> Gp1 & Gp2 OPS less in combination gp | Combination
more effective in
PACU, difference
persisted in
orthopaedic group
for full 24 h
No diff in adverse
effects | 1+ | | Goodarzi
(1999) | DB RCT
N=90
3-19 years
(fem osteotomy,
VDO, tibial
osteotomy,
Ilizarov &
talectomy) | Comparison of epidural opiates: Morphine 10mcg/kg/h vs Fentanyl 1mcg/kg/h vs Hydromorphone 1mcg/kg/h | VAS (1-5)
Side effects
Hourly for 30 hrs | No difference in pain scores Resp dep: M>F=HM Somnolence: M>F=HM N&V: M>F>HM U.retention: M>F>HM | Epidural
hydromorphone
fewer side effects
& comparable
analgesic efficacy | 1+ | | Duflo
(2006) | DB,RCT
N=33
7-15 yrs
(large bone
osteotomy,
arthrotomy, cyst,
tumour
resection) | Fascia iliaca compartment
block or sciatic nerve
popliteal block.
Bolus 0.2% ropivacaine,
0.5ml/kg
PCRA 0.1ml/kg bolus, 30 min
lockout + 0.02ml/kg/h
background vs CRA
0.1ml/kg/h | VAS 4 hrly for
48 hrs
Demand to
delivery ratio
Quality of
awakening
Satisfaction
Plasma
ropivacaine
levels at 24 & 48
hrs | Mean VAS in 1 st 24 h: 1.1 PCRA, 1 CRA Mean VAS in 2 nd 24h: 0.8 PCRA, 0.9 CRA Supplemental analgesia: 3 PCRA, 9 CRA No diff in satisfaction or quality of awakening Ropi plasma levels: significantly lower in PCRA gp | 3 exclusions
Potentially lower
systemic toxicity
Dec cost | 1+ | |-------------------------------|--|---|---|---|--|---| | Lovstad
(2001) | DB RCT
N=42 | 1. Sevo, epi with fentanyl vs, 2. sevo epi no fentanyl vs
3.propofol, epi no fentanyl 1: 0.1% bupivacaine, fentanyl 2mcg/ml, epinephrine 2mcg/ml 2 & 3: 0.15% bupivacaine, epinephrine 2mcg/ml | Verbal pain
scale (0-4)
PONV (0-3)
Pruritus
At 0h & 4 hrly
for | Plain bupivacaine gps needed 55-75% larger bupivacaine doses & 10/26 needed IV opiates. No diff in pain scores Fentanyl: 7/16 nausea, 2/16 vomited | | 1+ | | Castillo-
Zamora
(2005) | DB RCT
N=45
(Hip surgery) | Comparison of three doses of epidural morphine: 11.2, 15 & 20 mcg/kg | Pain
Side effects | 12-14 hrs analgesia in all groups | PONV: 46.7%,
60% & 86.7%,
with incr morphine | 1+ | | Bai
(2004) | RCT Unblinded N=91 1-14 yrs (lower limb surgery due to CP, polio, hip dysplasia) | PCEA lidocaine 5mg/h,
2.5mg bolus, 8 min lockout
vs NCA fentanyl 1mcg/kg/h
background | Parent VAS & Objective Pain Score 0-10 at 0, 6 & 24 hrs Side effects | OPS lower in epi group
(p<0.05)
PVAS lower in epi group
(p<0.05) | PONV: 16% epi
group, 30%
fentanyl group
(not signif) | 1+
(? Validity of parent
VAS & OPS) | | Kokki
(1999) | DB RCT
N=58
1-15yrs
(Lower limb plus | IV ketoprofen 1mg/kg loading
dose + 4mg/kg/24h vs
placebo
All epidural sufentanil | Rescue
analgesia
Pruritus, PONV | K gp 0/29 required rescue
analgesia
Control 8/29 rescue analgesia | No diff in PONV | 1- | | | urology) | | | | | | |-------------------------------|---|--|--|---|---|----| | Reinoso-
Barbera
(2002) | DB, RCT
N=30
2-16 yrs
(Vertebral
arthrodesis,
bone graft,
amputation,
osteotomy) | Epidural fentanyl (1mcg/ml) + lidocaine 0.4% @ 0.1- 0.35ml/kg/h vs epidural morphine 20mcg/kg 8 hrly All received IV metamizol | > 6yrs old VAS
0-10
< 6yrs old
LLANTO 0-10
(validated
Spanish OPS)
? frequency &
duration
Plasma
lidocaine levels | Pain score < 4 95% of time on FL group & 87% of time in M group Statistical but not clinical significance | Plasma lidocaine
levels not toxic
No diff in SEs | 1- | | Dadure
(2006) | Randomised Unblinded N=54 (club foot repair, ankle & foot osteotomy) | Continuous epidural block (CEB) vs Continuous popliteal nerve block (CPNB) Bolus 0.5 – 1ml/kg of equal volume mixture 0.25% bupivacaine & 1% lidocaine – both groups Ropivacaine 0.2% infusion at 0.1ml/kg/h for CPNB & 0.2ml/kg/h for CEB | Pain on
movement
VAS (0-10) or
CHIPPS at 1 hr
& then 6hrly for
48 hrs | No difference in pain scores or
rescue analgesia
Satisfaction 100% in CPNB,
86% in CEB | Increase adverse
effects in CEB gp:
Technical
problems, urinary
retention, PONV | 1- | | Antok
(2003) | RCT
Unblinded
N=48
7-12 yrs
(osteotomy,
arthrotomy,
tumour) | PCEA vs CEA 0.2% ropivacaine All received ketoprofen & propacetamol | VAS 0-10, 4 hrly
For 48 hrs | No difference in VAS
PCEA gp received 50% ropi
dose compared with CEA gp
(p<0.001) | No difference in
SEs | 1- | | Tran
(2005) | RCT
Unblinded
N=36
12-19 yrs | Fem-Sci NB with 0.125% bupivacaine & clonidine2mcg/kg (FSNB) vs intra-articular bupivacaine | VAS 0-10 at 0,
1, 4, 8, 12 ,16 &
18 hrs
Intra-op fentanyl | FSNB: Dec intra-op fent (p=0.04) Dec morphine usage (p=0.03) Longer duration of analgesia | 2 pts excluded
from FSNB gp –
failed block
IA: 50% PONV | 1- | | | (ACL surgery) | 0.25%, clonidine1mcg/kg & morphine 5mg (IA) All received PCA morphine | Morphine usage
Time to 1 st
morphine
SEs | (p=0.0001)
Dec VAS (p=0.01) | FSNB: 11%
PONV | | |-------------------|---|--|---|---|---|----| | Kiffer
(2001) | DB, RCT
N=21
6-15 yrs | Epidural morphine 30mcg/kg
vs control
All received PCA morphine &
IV propacetamol | VAS hrly for 24
hrs
Morphine
consumption
Side effects | VAS & morphine requirements significantly less in epi morphine group | No difference in incidence of side effects | 1+ | | Paut (2004) | DB RCT
N=6
5-15 yrs
(femoral
surgery) | Fascia iliaca compartment block 0.7ml/kg 0.5% ropivacaine (4 pts) vs 0.7ml/kg 0.275% ropivacaine (2 pts) | Plasma levels of ropivacaine | 3/4 pts receiving higher concentration had a Cmax that exceeded the maximum recommended level | All had satisfactory analgesia | 1- | | Gouda
(2003) | N=36
1-=24mts
(Club foot) | Comparison of IVRA with ropivacaine0.1% vs IVRA with lidocaine0.3% vs control | Time to first analgesia OPS | T to 1 st analgesia = 52, 44 & 10min, ropi, lido, control | | 1- | | Eberson
(1999) | Case control
N=64
6m-18 yrs
(Long bone
osteotomy &
CTEV) | Ketorolac 1mg/kg loading
dose, 0.5mg/kg 6h for 24 hrs
+ breakthrough IV morphine
Controls (N=37) IV morphine
0.1mg/kg 3 hrly prn | Morphine usage
GI complications
Length of stay
Bleeding
complications | K gp: 2.29 morphine doses
Controls 10.02 morphine
doses (p<0.05) | No bleeding complications GI effects: K: 4%, controls 32% (p<0.05) Length of stay: K: 3.63 days Controls: 4.74 days | 2+ | | Herrera
(2004) | Cohort study
N=35
(Femoral
nailing) | Intra-operative haematoma
block
1-2ml/kg of 0.5% or 0.25%
bupivacaine vs control
all received 0.1mg/kg
morphine | "Narcotic
equivalent dose"
Time to 1 st
opiate
12 hrs | Time to 1 st opiate inc by 5 hrs (p=0.08) Narcotic equivalent requirement in haematoma block gp: 0.05Eq/kg & 0.12Eq/kg at 6 & 12 hrs In controls: 0.09Eq/kg & 0.13Eq/kg (not ss) | No adverse effects | 2- | | Black
(2003) | Retrospective Case control N=92 (Club foot surgery) | Caudal vs no caudal | Opiate usage for 8hrs | No diff | | 2- | |------------------|---|---|--|--|--|-----------------------------------| | Tobias
(1999) | Case series N=20 6m-12 yrs (foot & ankle surgery) | Popliteal fossa block
0.75ml/kg of 0.2%
ropivacaine | OPS (0-10)
30 min, 60 min&
2hrly for 12 hrs
Analgesic use | 12 hrs analgesia
19/20 no other analgesia for 8
hrs
8/20 no other analgesia for 12
hrs | Unsuccessful in 1 pt No adverse effects | 3 | | Dadure
(2004) | Case series N=15 1-14 yrs (Femoral shaft & hip surgery) | Continuous psoas compartment block, 0.2% ropivacaine | VAS & CHIPPS
at 1, 6, 12, 18,
24, 30, 36 & 48
hrs | Median pain score 1 at 1 hr
0 thereafter | No adverse effects | 3 | | Brenn
(1998) | Case control N=92 4 – 13 yrs (CP pts, orthopaedic & Nissen fundo) | Bolus epidural morphine vs
CEA bupivacaine & fentanyl | | 91/92 excellent analgesia | 6.5% XS sedation in bolus group | 3 | | Lejus
(2001) | Prospective case series N= 348 12 days – 18 yrs (orthopaedic 80% & general) | CEA Fentanyl 0.2mcg/kg/h With Bupivacaine <20kg 5mg/kg/day 21-40kg 4.2mg/kg/day >40kg 3.2 mg/kg/day | 0-5 pain score
(Krane) hrly for
43 hrs
Side effects | 86% of all pain scores <3
2.5% pain scores = 5 | PONV in 14%
Pruritus 2/348
No seizures,
hypotension or
respiratory
depression | 3
Low efficacy in club
foot | | DeVera
(2006) | Retrospective
case series
N=1809
2m-20 yrs | 1011 lower extremity blocks
646 upper extremity blocks
579 neuraxial blocks | Complications | 2 self limiting complications following PNB | | 3 | | Lovstad
(1997) | Case series N=100 4-14 yrs (femoral osteotomy) | Epidural 0.1% bupivacaine,
fentanyl 2mcg/ml,
epinephrine 2mcg/ml
Rectal paracetamol | Verbal pain
score 0-4
Side effects | 99% 0 or low pain score at rest
for 80% of time
80% 0 or low pain score for
80% of time on movement | 63% PONV
49% pruritus | 3 | |-------------------|--|--|--|--|--|---| | Vas
(2005) | Case series N=160 4m-12 yrs (Foot surgery, tendon transfers, tibial osteotomy) | Continuous
Sciatic block 0.25% bupivacaine, 0.75ml/kg bolus followed by 0.3mg/kg/h bupivacaine | CHEOPS 6 hrly
for 72 hrs | Pain score 1-4 86%
5-6 13%, 7 <1% | Block failed in 9 | 3 | | Duflo
(2004) | Case series
N=27
4-17 yrs
(Lower limb
surgery) | Patient controlled regional analgesia. Fascia iliaca block or sciatic nerve popliteal block 0.2 % ropivacaine, 0.5ml/kg bolus PCRA: 0.2% ropi 0.02ml/kg/h, 0.1ml/kg bolus, 30 min lockout Paracetamol & Ketoprofen | VAS or
CHEOPS for 48
hrs
Demand to
delivery ratio | Mean VAS 1.09 Mean CHEOPS 4.75 2 pts req additional analgesia | 2/27 motor block
1/27 catheter
removed because
of leak
No serious
complications | 3 | | Paut
(2001) | Case series N=20 1-16 yrs (Knee & thigh surgery & fractured femur) | FIC block
Bolus 0.25% bupivacaine
0.62ml/kg
Infusion 0.135mg/kg/h | Plasma levels at
24 & 48 hrs
VAS (0-100) or
CHEOPS 4 hrly
for 48 hrs
Block efficacy | Plasma bupivacaine levels within the safe range | No severe side effects | 3 | | Manion
(2005) | Case series N=14 5-11yrs (pelvic & | Lumbar plexus block 0.5ml/kg of 0.5% bupivacaine + 1mcg/kg clonidine | Pain score?
which
For 72 hrs | Effective analgesia | No complications | 3 | | fer | moral surgery) | | | | |-----|----------------|--|--|--| INTERVENTION: Upper limb surgery (Orthopaedic & Plastic surgery) | AUTHOR | DESIGN | TREATMENT | OUTCOME
MEASURE | RESULT & CONCLUSION | SIDE-EFFECT/
SECONDARY
OUTCOME &
CONCLUSION | EVIDENCE
GRADE /
COMMENTS | |----------------------------|---|---|---|---|---|---------------------------------| | lwata
(2000) | DB, RCT
N=26
2-11 years | Fentanyl brachial plexus
block vs saline
Axillary approach | Time to onset of pain | Time to onset of pain in fentanyl group 809 minutes, 199 in controls | | 1- | | Thornton
(2003) | DB, RCT
N=35 | Axillary block with 0.2% ropivacaine 0.5ml/kg vs 0.25% bupivacaine 0.5ml/kg | FLACC at
0,3,6,12 & 24hrs
Time to 1 st
opioid analgesia | No difference | | 1+ | | Fleischmann
(2003) | Prospective,
randomised
N=40
1-10 years | Axillary (ABP) vs Lateral infraclavicular (LVIBP) Both groups: 0.5ml/kg of 0.5% ropivacaine | Sensory &
Motor blockade | Sensory (quality & distribution) & motor blockade more effective in LVIBP | No major
complications in
either group
LVIBP less painful | 1- | | Pande
(2000) | Prospective case series N=200 5-12 years | Supraclavicular brachial plexus block for upper extremity trauma | Ability to perform procedure | Satisfactory block | No pneumothorax | 3 | | Carre
(2000) | DB, RCT
N=70
4-15 years | Single injection (S) vs
multiple fractionated doses
(M) for axillary block | Motor & sensory block | No benefit to fractionated doses (easier diffusion of LA in perineural space cf adults) | | 1+ | | Fisher
(1999) | N= 185 patients,
250 procedures
Case series
5 mts – 17 yrs | Axillary block with 0.25% bupivacaine 0.5-0.6ml/kg | Intra-operative & postop analgesia | 54% no further intra-operative analgesia Block failed in 6% | No complications | 3 | | De Jose
Maria
(2004) | Case series
N=55
5-17 yrs | Vertical infraclavicular block with 0.5ml/kg of 0.5% ropivacaine | Number of
attempts,
response to
surgery, VAS, | 1 st or 2 nd attempt 85%
3 rd or 4 th attempt15%
98% effective for surgery
VAS <3 all patients | No pneumothorax
or puncture of
major vessel
2 pts Horner's | 3 | | | | | complication & | Mean sensory block 8.45 hrs | | |----------|----------|---------------------------------|-------------------|---------------------------------|----| | | | | duration of block | Mean motor block 6.52 hrs | | | Altintas | N=49 | Axillary block with 0.8ml/kg of | | No difference in pain scores in | 1+ | | (2000) | 1-11 yrs | 0.25% bupivacaine | requirements | 1 st 8 hours. | | | | | Performed pre-surgery or | Faces 2, 4, 6, 8, | 8 in pre-group & 20 in post | | | | | post surgery | 10 & 24 hrs | group did not require analgesia | | | | | | Analgesic | in the 24 hr study period | | | | | | requirements for | | | | | | | 24 hrs | | | INTERVENTION: Spinal Surgery | AUTHOR | DESIGN | TREATMENT | OUTCOME
MEASURE | RESULT & CONCLUSION | SIDE-EFFECT/
SECONDARY
OUTCOME &
CONCLUSION | EVIDENCE
GRADE /
COMMENTS | |-------------------|--|--|---|---|---|---------------------------------| | Gall (2001) | DB, RCT
N=30
9-19yrs | All: PCA morphine
Intrathecal morphine 0, 2 or 5
mcg/kg | Time to 1st morphine Morphine consumption VAS (0-100) at rest & on movement For 24 hours | Time to 1 st morphine: 5>2>0
mcg/kg
VAS at rest: 5=2>0 mcg/kg
VAS on movement no
difference | Dec intra-op
bleeding with
5mcg/kg | 1+ | | Munro
(2002) | DB RCT
N= 35
11-17yrs | IV ketorolac 0.5mg/kg 6h for
36h post-op
All: PCA morphine | Pain & sedation
assessed bd for
3 days,
morphine
consumption,
pruritus,
nausea,
constipation | K group lower pain scores 1 st & 2 nd days (p<0.05), dec morphine consumption No diff in morphine related adverse effects | No diff in bleeding
No failure of
fusion at long
term follow up | 1+ | | O'Hara
(2004) | DB, RCT
N=31 | All: PCA morphine Epidural: bupivacaine: 0, 0.1% or 0.0625% Both bupivacaine solutions contained 5mcg/ml fentanyl (mid-thoracic epidural) | VAS, morphine usage, 4 hourly for 96 hours Time to oral intake, ambulation & discharge | No difference | | 1+ | | Blumenthal (2006) | RCT
N=30
11-17yrs
(Anterior
surgery) | Double epidural catheter 0.3% ropivacaine(E) vs Continuous IV morphine 50mcg/kg/h (M) (All received TCI remi until 1 st post-op morning = T0) | VAS(0-100) at
rest (6hrly) & on
movement (24,
48 & 72h)
Rescue
analgesia | E group: significantly less pain at rest & on movement, less rescue morphine, improved bowel activity & higher patient satisfaction | Motor block –
transient in 2
patients.
No hypotension
Less PONV &
pruritus | 1+ | | | | All received rofecoxib & IV paracetamol | Motor block PONV & pruritus (6 hrly), Bowel function (12hrly) Patient satisfaction | | No neurologic complications | | |--------------------|--|---|---|---|---|---| | Blumenthal (2005) | Prospective,
randomised,
unblinded
N=30
12-22yrs | Continuous IV morphine vs
double epidural catheters
0.3% ropivacaine
(All received TCI remi until 1 st
post-op morning = T0) | VAS (0-100) at rest & on movement Rescue analgesia PONV, pruritus 6 hrly from T0 – T72h, bowel function 12 hrly | Epi group: VAS lower at rest except at 12, 60 & 72 hours. VAS lower on movement at 24, 48 & 72 hours | Epi group: Less
pruritus & PONV
Bowel function
better | 1- | | Cassady
(2000) | Prospective,
RCT, unblinded
N=33
11-18yrs | Thoracic epidural bupivacaine + fentanyl vs PCA morphine | VAS, time to
resumption of
bowel sounds,
liquid intake,
and side effects | No difference in pain score | Earlier resumption
of bowel sounds
in epi group – but
no diff in time to
oral intake | 1- | | Goodarzi
(1998) | Prospective
Randomised
10-16y
N=80 | Intrathecal morphine
20mcg/kg + 50mcg sufentanil
vs IV sufentanil | "descriptive
scale" 0-10 | IT group "pain relief for
14.5hrs" IV group required
PCA morphine | IT group decreased blood loss IT group: respiratory depression in 1 st hour but not thereafter | 1-
No mention of pain
scores in results | | Sucato
(2005) | Retrospective
Case Series
N=613 | Epidural 0.1% bupivacaine + hydromorphone vs PCA morphine | Faces (0-5)
At 2,4, 6, 8,12,
24, 36 & 48h | Epidural group had significantly better pain scores on average & at each time point. Range of pain scores & average max score less in the | Epi group had inc
pruritus, PONV &
respiratory
depression | 2++ | | | | | | epi group | | | |-----------------------|--|--|--|--|----------------------------------|----| | Vitale
(2003) |
Retrospective
review of
complications of
ketorolac use
N=208 | Ketorolac (60 pts) vs no
NSAID (148 pts) | Post-op
bleeding & bone
fusion | No difference | | 2+ | | LaMontagne
(2003) | RCT
Unblinded
11-14 yrs | Coping instruction vs
concrete objective
information vs combination
All had PCA | VAS 0-10
Day 2-4 | Coping strategy gp reported less pain | | 2 | | Shaw
(1996) | Case series N=71 (30 retrospective & 41 prospective) 7-19 yrs | Epidural 0.0625% - 0.125% bupivacaine with fentanyl, morphine or hydromorphone (61pts) | | Did not compromise
neurological assessment
64 effective analgesia | | 3 | | Lowry (2001) | Prospective
review
N=10
(anterior fusion) | Epidural fentanyl 1mcg/kg + hydromorphone 5 mcg/kg at end of surgery. Post-op 0.1% ropivacaine + hydromorphone 10mcg/ml @ 0.2ml/kg/h | VAS 0-10
For 5 days | Mean of median pain scores:
2.1
Mean maximum pain score:
4.1 | 3/10 pruritus
1/10 drowsiness | 3 | | Tobias
(2001) | Case series
N=14
5-17 yrs | Double epidural Fentanyl + hydromorphone at end of surgery Post-op ropivacaine + hydromorphone | VAS 0-10 & objective pain score 0-10. 2-4hrly for 5 days | Mean of median pain score: 1.5, 1.6, 1.4, 1.1, 0.9 Mean of maximum pain score: 3.5, 4, 3.1,2.4, 2.2. | No adverse effects | 3 | | Ekatodramis
(2002) | Prospective case series N=23 12-19 yrs Anterior surgery | Double epidural
0.0625% bupivacaine,
fentanyl 2mcg/ml & clonidine
3mcg/ml | VAS
6 hrly for 48 hrs | VAS 0 at rest in all patients
VAS 30 on movement in 17% | Pruritus 0
N&V 17% | 3 | | Turner
(2000) | Case series
N=14 | Epidural bupivacaine 0.1%
bupivacaine + 5mcg/ml
fentanyl | VAS Placement checked radiologically | Correct placement associated with "effective analgesia" | | 3 | | Arms
(1998) | Case series
N=12
10-18yrs | Epidural 0.0625% - 0.125% bupivacaine + morphine | Faces 0-10 | Effective analgesia | Pruritus 7/12 | 3 | |--------------------|---------------------------------|--|-----------------|---------------------|---------------|---| | Goodarzi
(1996) | Case series
N=10
15-18yrs | IT morphine 20mcg/kg + 50mcg/kg sufentanil | Effect on SSEPs | No effect on SSEPs | | 3 | **INTERVENTION:** Plastic surgery of head and neck (Cleft lip & palate & otoplasty) | AUTHOR | DESIGN | TREATMENT | OUTCOME
MEASURE | RESULT & CONCLUSION | SIDE-EFFECT/
SECONDARY
OUTCOME &
CONCLUSION | EVIDENCE
GRADE /
COMMENTS | |---------------------|---|---|---|---|--|---------------------------------| | Bremerich
(2001) | DB RCT
N=80
1-20 months
Cleft palate | Rectal paracetamol: 10, 20 & 40mg/kg vs placebo | Paracetamol plasma level CHIPPS (0-10) Opioid administration | Plasma levels sub therapeutic
No difference in opioid use | | 1+ | | Prabhu
(1999) | DB RCT
N=30
4-20 months
Cleft lip | Infra-orbital nerve block vs peri-incisional local infiltration 0.125% bupivacaine | Pain relief score
(Attia) 0-20
At 0,1,2,4, 8 &
24 hrs | Statistically significant better pain relief up to 8 hrs post-op with IOB. IOB less rescue analgesia | Not recorded | 1+ | | Cregg
(1996) | Single blind
randomised
N=43
3-15 yrs
Otoplasty | Gp A local infiltration with 1% lidocaine with epi 0.4ml/kg Gp B regional nerve blockade with bupivacaine 0.5% 0.4ml/kg | Pain score (0-
10)
At 0,
30,60,90,120,18
0, 240, 360 &
480 min
Time to 1 st
supplemental
analgesia | No differences in pain scores, supplemental analgesia or PONV Time to 1 st supplemental analgesia 8.6h gp A, 10.5 gp B | Haemostasis
better in lidocaine
with epi gp | 1- | | Dawson
(1996) | Single blind,
randomised
N=34
Mean age 11
yrs
Alveolar cleft
bone graft | All received PCA morphine 0.015mg/kg 8 min lockout 18 received ketorolac 1mg/kg loading dose followed by 0.5mg/kg 6h | Morphine usage
Time to
mobilisation &
discharge | No difference in morphine usage No difference in time to mobilisation or discharge | Effect on bleeding not studied | 1- | | Eipe
(2006) | Case series
N=20
Cleft lip | Infra-orbital nerve block | Time to 1 st
analgesia | 6-24 hrs analgesia | | 3 | | Sylaidis | Case series | Diclofenac 1mg/kg 12 hrly & | Risk of post-op | Effective analgesia | Early discharge | 3 | |----------|--------------|-----------------------------|-----------------|-----------------------------|-----------------|---| | (1998) | N=20 | Paracetamol | haemorrhage | No further opiates required | Not associated | | | | 6m-9y | | | · | with increased | | | | Cleft palate | | | | bleeding | | INTERVENTION: Neurosurgery | AUTHOR | DESIGN | TREATMENT | OUTCOME
MEASURE | RESULT & CONCLUSION | SIDE-EFFECT/
SECONDARY
OUTCOME &
CONCLUSION | EVIDENCE
GRADE /
COMMENTS | |----------------------|---|---|---|---|--|---------------------------------| | Tobias
(1997) | Case control
n=24
13m-10.5 yr | Intrathecal morphine 20mcg/kg vs No treatment (retrospective cohort) | Time to first
postoperative
analgesia
Total dose
paracetamol
and Nalbuphine | Significant delay in TTA (p,0.0001) Significant reduction in total doses postoperative analgesia | PONV, pruritis,
urinary retention,
respiratory
depression (no
difference) | 2- | | | | | VAS (>5yr) or
Unvalidated
behavioural
scale | Scores not reported | | | | Monitto,
(2000) | Case series n=240 Mixed cases 0-6 yr (2.3±1.7 sd) 12 neurosurgery | Parent/ Nurse controlled
analgesia with fentanyl (10
cases) or hydopmorphone (2
cases) | Duration of
treatment
Daily morphine
dose
Max daily pain
scores
('objective pain
score' or self
report) | Duration of treatment 4 (3-5) days. Neurosurgery patients 4 (3-5). Morphine use ± 30mcg.kg.hr on ist 2 days decreasing thereafter. At least 80% pain scores, 3/10 on 1 st 2 days. | Naloxone for resp.
depression 9/250
No significant risk
factor (including
age) identified. | 3 | | McEwan et al. (2000) | RCT (?blinding) Pharmacokinetic study | IM or rectal Codeine
Phosphate 1mg/kg | CHEOPS | No difference in analgesia
(CHEOPS scores all high!) | No difference in absorption or peak plasma levels | 1- | INTERVENTION: Cardiac surgery/ sternotomy | AUTHOR | DESIGN | TREATMENT | OUTCOME
MEASURE | RESULT & CONCLUSION | SIDE-EFFECT/
SECONDARY
OUTCOME &
CONCLUSION | EVIDENCE
GRADE /
COMMENTS | |--------------------------|---|---|--|--|---|---| | Finkel et al.,
(2002) | RCT not blind
14, 2x7
7mths-7.5 yrs | Intrathecal Morphine 10mcg/kg + hyperbaric tetracacine 0.5% or tretracaine followed by Hypobaric Morphine/saline | Pain score
Duration of
analgesia
1hrly/12hrs | No difference in scores/duration | PONV decreased in hypobaric group | 1-
small size
unblinded | | Pirat et al., (2002) | RCT
30, 3*10
6months-6years | IV fentanyl
IT fentanyl
IV+IT fentanyl | COMFORT CHEOPS Analgesia in CICU Cortisol Glucose, insulin ,lactate 24hrs. | No difference in pain scores or
Time to 1 st analgesia | PONV Time to extubation(TTE) No diff PONV TTE IT+IV <it=iv< td=""><td>1-
Small size
Randomisation not
described
Blinding'observer
unaware'</td></it=iv<> | 1-
Small size
Randomisation not
described
Blinding'observer
unaware' | | Gupta et al.,
(2004) | RCT
70, 2x35
2.5months-
14.5ys | IV ketorolac 0.5mg/kg (max 15mg) Commenced 6 hours after admission to CICU. Sig. bleeding in 1 st 6 hrs excluded | Bleeding
48hrs | No difference, ketorolac didn't increase bleeding | TTE, Morphine requirement, pericardial effusion. Length of hospitalisation Creatinine. No difference | 1+
no pain scores, no
difference in
analgesic
requirements. | | Suominen et al., (2004) | RCT
71, 35+36 | IT Morphine 20mcg/kg vs
Intravenous morphine | Analgesic consumption. Time to 1 st analgesia. (TTFA) 24hrs | Morphine consumption (0.03) TTFA 8.7 vs 12.3hrs (0.003) | PONV
Itching
Respiratory
Depression
No difference | 1+ Closed envelope randomisation. IT group significantly | | | | | | | 0.65 | younger. | |----------------------------
---|--|--|---|--|---| | Hammer et al., (2005) | RCT
37, 17+18
3months-6years | IT Tetracaine0.5%
+Morphine 7mck/kg vs No
treatment
Remi-based GA technique | Pain score FLACC/Wong Baker Analgesic consumption- PCA fentanyl 5+ days | Pain scores lower in IT group for 8 (0.046) and 24(0.05) hours. Fentanyl consumption lower at 8(0.003) and 24(0.004) hours. | Vomiting Respiratory depression Itching All no difference. | 1-
Randomisation not
described
Observer blinded | | Chu (2006) | RCT
40
3.5yrs (±2.5) | IV Tramadol vs IV morphine NCA | CHEOPS Sedation scote TT Awakening TT1st NCA bolus TTTExtubation Vital signs | No difference in pain score
Time to awakening shorter
with tramadol | PONV
Resp depression
ICU stay
No difference | | | Shayevitz et
al.,(1996) | Case control
(retrospective
casenote
review)
54, 27=27
5-6 years old
(0.3-19) | IV opioid, IVO, Fentanyl (6 mcg/kg/min) vs
Lumbar epidural morphine
LEM (3-4 mcg/kg/min) | 'Global pain rating' using observer VAS Supp opioid medication Time to extubation Transfer from ICU Resumption normal diet. Discharge LOS. 5 +days | "Global pain rating" less day 1 for LEM Supplementary analgesic use less for late extubated LEM No differences for non-pain outcomes in early extubated. Shorter ICU stay, time to normal diet for late extubated | PONV
Itch
No difference | 2- ~47 sets of records examined in each group and 27 selected according to pre-set criteria. Use of 'opioid equivalents' LEM may be useful for selected populations. | | Leyvi et al.,
(2005) | Rectrospective
cohort study
3 cohorts ASD
34, VSD 37, | Caudal Morphine 70-
110mcg/kg + Bupiv 0.25%
1ml/kg
vs IV Opioid | PICU/ hospital stay | No differences detected | FLACC and
Morphine
consumption in
mixed subgroup | 2-
risk of bias, small
number in pain
analysis | | | TOF
46 | | | | (25 pts). No
difference | | |------------------------|--|--|---|--|---|--| | Hammer et al.(2000) | Retrospective
case series.
50, 25 SAB and
25 TEB
Ages ~3-5ys | SAB tetracaine + Morphine
TEB bupivacaine 1.25mg/kg+
hydromorphone | Vital signs Hypercarbia PONV Wong-Baker (>3yr) Unspecified behavioural pain scale (<3yr) | Vital signs, no difference. SAB more Analgesia and sedation than TEB. PONV no difference but SAB received prophylactic ondansetron. | | 3
(9 cases also in
Petersen et al
2000) | | Petersen et al. (2000) | Retrospective
case series.
220 (76 non-
sternotomy) | SAB Tetracaine +Morphine TEB Bupivacaine or Lidocaine+ Morphine or hydromorphone Caudal Bupivacaine + morphine | OPS (<3yr) Wong Baker (>3yr) VAS>7yr Analgesia requirement | TEB Pain score <5 for 48hr in patients with catheters 51/55 No cath, variable time to 1 st analgesia 7-13hrs. | PONV 86/220 Itching 21/220 Urinary Retention 16/220 (most catheterised!) Resp depress 4/220 Infection 0 Haematoma 0 | 3
(9 cases also in
Hammer et al
2000) | INTERVENTION: Thoracotomy | AUTHOR | DESIGN | TREATMENT | OUTCOME
MEASURE | RESULT & CONCLUSION | SIDE-EFFECT/
SECONDARY
OUTCOME &
CONCLUSION | EVIDENCE
GRADE /
COMMENTS | |-------------------|---|--|---|---|---|--| | Bozkurt
(2004) | RCT (not blind)
Ages 2-14 yrs
n=32 (16 x2) | Thoracic epidural morphine
100mcg/k vs IV morphine
infusion 20mck/kg/hr (LD
50mcg/kg) | Pain (24hr; 1, 4,
8, 12, 24 (Wong
Faces)
Sedation
Compications
Plasma Cortisol
Plasma Glucose
Insulin
Se Morphine | Pain scores similar at 1 4 8 12 hrs Epi>systemic 24hr Rescue 5/16 epi 1/16 IV morphine Conclusion no difference | Sedation no diff
PONV Epi4/16 IV
2/16 | 1-
I think that IV is
superior. | | Matsota
(2001) | RCT
Ages 5-12
n=20 (2x10) | Direct vision Intercostal Bupivacaine (3mg/kg) vs IV single dose pethidine (1mg/kg) | Duration (time to first analgesia) Side effects | Longer duration with ICB | No side effects | 1- | | Lynn (2003) | Cohort study. Comparison of cyanotic and acyanotic infants n=20 (2x10) 0-90 days | Continuous infusion of morphine to target plasma concentration of 30ng/ml | Modified infant pain scale | Effective analgesia in both groups | Age more important than presence of cyanosis for morphine clearance CO2 response curves similar in both groups | 2-
?validity of pain
score | | Lynn (2000) | RCT
Infants 42-165
days
N=83
Mixed surgery, 5
thoracotomy | Continuous or intermittent (bolus) morphine All received paracetamol | Modified infant pain scale | Infusion more effective at reducing pain scores (p<0.001) but higher dose with infusion. | | 1- low number of thoracotomy patients limits transferability of findings ?validity of pain score | | van Dijk
(2002) | DB RCT Comparison of IV infusion and bolus N=181 (30 thoracotomy) Ages 0+3years | Efficacy of 10mcg/kg CI vs
30mck/kg bolus 3 hourly.
Following 100mcg/kg loading
dose. | COMFORT
VAS | 60% if patients in both groups effective analgesia. Age and dose related differences. 10mcg/kg ineffective in 30% of patients. This dose more effective in neonates. | | not stated which groups thoracotomy patients distributed. | |--------------------|---|---|---|---|--|---| | Cheung
(1997) | Prospective observational study/ case series. Ages: 1.5 weeks Range 0.1-20.4 Newborn to 5 months n=22 | Continuous Paravertebral Direct vision catheter placement after surgery. GA with Fentanyl 2mcg/kg. 1.25mg/kg bupivacaine + Epi LD, followed by 0.25mg/kg/hr (fixed rate) All patients received paracetamol | CRIES pain score for 48hr (modified) 'Rescue' IV morophine Serum bupivacaine | 18/22 median mean pain score 0.29 (0.00-1.63) 86% satisfactory analgesia. 3 patents rescue morphine. Serum bupivacaine > 3mcg/ml in 3 patients (30, 42, 48hr) No observed toxicity | 2/22 leakage of infusate 2/22 accidental disconnection | 3 No formal measurement of clinical toxicity | | Downs
(1997) | Prospective
observational
study/ case
series
Ages 1-9 years
n=9 | Exprapleural Intercostal block (/ paravertebral), direct vision. Bupivacaine LD 0.25-0.5% 0.28±0.1ml/kg), infusion 0.21±0.09ml/kg/hr Bupivacaine infusion 72±15hr Morphine infusion 48hr | Bupivacaine dose Posoperative morphine requirements (continuous infusion or PCA) | Mean dose bupivaciane
0.28±0.08 mg/kg/hr
Morphine < 0.03mg/kg/hr | No PONV
No Resp
depression | 3
Abstract only | | Gibson
(1999) | Retrospective case control. Ant. spinal fusions and thoracic surgery n=13 | Retropleural intercostal catheter Bupivacaine 0.25-0.125% at 0.5ml/hr (n=7)+ IV morphine IV morphine only controls (n=6) | Total morphine use | Morphine 0.544mg/kg/day vs
0.204mg/kg/day P=0.001 | | 2-
no pain scores or
discussion of
quality of
analgesia | | Higgins | Retrospective | Administration of prescribed | Total drugs | Thoracotomy patients < 24 | | 3 | | (1999) | Audit/ Case
series
Strenotomy and
Thoracotomy
patients
n=114 | regular analgesia Use of faces pain scale in older than 39 months | administered Frequency of pain evaluation | months old least analgesia Sternotomy patients .36 months most analgesia Pre-dose Scale 35%, post dose 15% Conclusion: analgesia poorly managed | | | |----------------------
---|--|--|--|--|--------------------| | Karmakar
(1996) | Case series
Infants
5.3weeks (2d-
5months)
n=20 | Paravertebral block
Bupivacaine 1.25mg/kg LD
followed by 0.5mg/kg/hr | CRIES Rescue morphine infusion Serum bupivacaine | 18/20 (90%) pain score 0.46 (0.0-1.4) Maximum bupivacaine 2.0 cg/ml (SD 0.63). | 1 Patient ipsilateral
Horners syndrome. | 3 | | Semsroth
(1996) | Case series n=20 9 infants < 15kg 11 children >15kg | Intrapleural bupivacaine LD
0.625mg/kg+Epi, followed by
1.25mg/kg/hr | Pain Score
Infusion rate
adjustment
Supplementary
opioid | Intrapleural bupvacaine is effective for infants and children | No
Cardiorespiratory
complications | 3
Abstract only | | Shah (1997) | Case series Age 9.8yrs (2-16) n=15 | Paravertebral block 9 Pre-emptive 6 Postoperative | Faces Pain
Score
VAS
Rescue
morphine
requirements | No differences in alalgesia Paravertebral block is effective | No complicationswolf | 3
Abstract only | | loscovich,
(2004) | Case series
10-15years old | Intrathecal morphine 80-
100microgm in 2ml saline. | VAS 2hrly
Sedation score | VAS <3
No additional opioids in 1 st | PONV 1/7 | 3 | | [K-11] (0000) | n=7 (6
thoracotomy, 1
sternotomy) | All patients received IV paracetamol 1-2 g or dypirone 500mg 6hrly | Rescue analgesia 24hrs | 24hrs | lutare la const | | |--------------------|---|--|---|--|---|--| | Kokki (2006) | Case series
10m-12yrs
n=10 | Interpleural bupivacaine +epi
2mg/kg, then 1mg/kg 2hrly for
pin score > 4
IV oxycodone 0.1mg/kg if pain
score not reduced by
bupivacine
All received 10mg/kg rectal
Ibuprofen 6hrly | Pain score: VAS Total bupivaciane doses Total oxycodone doses | All received 3-10 (6.1 SD 2.3) doses bupivacaine. All children received 3-10 doses oxycodone (6 SD 3.6) | Interpleural
bupivacaine =
ibuprofen isufficient
for thoracotomy
pain | 3 | | Lin (1999) | Retrospective case series 7months-27months N=27 | 1. Single injection caudal bupivacaine 1mg/kg + epi (n=6) 2. Single injection caudal bupivacaine 1mg/kg+epi, +PF Morphine 50-100microgm/kg (n=11) 3. LD Bupiv 0.5-0.75mg/kg+PF Morphine 10+30microgm/kg then 0.1%bupivacaine+mor phine 10microgm/ml at 0.25-0.3ml/kg/hr (n=10) | Supplementary postoperative opioid | Continuous infusion (Gp3) no postoperative opioid supplements (p=<0.05) | Duration of anaesthesia Gp3>Gp2 (p0.05) Length of ICU stay: Gp 3 , Gp2 (p<0.05) POEmesis: Gp 2> Gp 3 (p=0.05) Time to oral intake Gp3 <gp2 (p<0.05)="" (p<0.05)<="" <="" gp1="" gp3="" hospital="" length="" of="" stay="" td=""><td>2-
Unvalidated pain
score (0-10)</td></gp2> | 2-
Unvalidated pain
score (0-10) | | Karmakar
(1997) | Case report
N=1
11 months old | Bilateral paravertebral catheters | Pain score
Supplementary
analgesia
Serum | Satisfactory pain scores No supplementary analgesia Bupivacaine levels below toxic. | | 3 | | | | | Bupivacaine | | | | |--------------------|---|--|---|--|--|---| | Birmingham, (2003) | Case series | PCEA | | | | 3 | | Monitto,
(2000) | Case series
n=240
Mixed cases 74
abdominal
surgery | Parent/Nurse NCA | | | | | | Lejus
(2001) | Prospective evaluation of epidural over 6 years. n=348 (307 children 12 days to 18 years, median 72 months) | Bupivacaine (mean concentration 0.185%)and Fentanyl (5ug/kg/day). Different types of surgery including fundoplication (9). | Hourly pain
scores (Krane et
al)
Global pain
index | Combination provides safe/
effective analgesia | Urinary retention
17%
N & V 14%
Pruritus 0.6% | 3
prospective but
not analytical | | Peters
(1999) | RCT
n=47
5-18 YEARS
Major abdo or
spinal surgery | PCA (Morphine) 15mcg/kg/hour + bolus of 15mcg/kg –lock out 10min CI (Morphine) 20 to 40 mcg/kg h | Analgesia (self
reporting every
3 hours via
VAS)
Morphine needs
Side effects | Morphine consumption SIG higher in PCA No difference in pain scores | No difference in side effects | 1+ Multimodal technique not used. High incidence of moderate to severe pain scores. | | Moriarty
(1999) | Case series/
unmatched
cohort study
n=272
(n=29 thoracic) | 72 children received an infusion of bupivacaine 0.125% + diamorphine 20 microg x ml-1, then 200 children received plain ropivacaine solutions. PRN diclofenac (or codeine)+ paracetamol. | Pain score ('5 point faces score' validity not stated) Sedation score 'Nausea score' Pruritis | Both methods satisfactory analgesia (±20%incidence of moderate pain: pain scores < 3). | Difference in side
effects for PONV
and pruritis
(significance not
reported) | 3
Thoracic sub-
group not
specifically
identified/reported |