

Making the Paediatric Theatre

Environment Greener

Dr J Groome¹, Dr H Lewis¹, Dr A Nicklin¹, Dr L Michaels² GASP³

1. Paediatric anaesthetic registrar, The Royal London Hospital BartsHealth NHS Trust 2. Paediatric anaesthetic consultant, The Royal London Hospital, BartsHealth NHS Trust 3. Greener Anaesthesia and Sustainability Project

Barriers to TIVA use

Equipment availability

Familiarity with technique

10.64

40.39

42.5

High turnover lists

2, 12%

6,35%

2, 12%

7, 41%

Introduction

- Anaesthetic gases = 5% carbon footprint^{1,2}
- Desflurane is most harmful and expensive
- N20 >75% of carbon impact^{1,2}
- Paediatric theatres important area for change less routine use TIVA³ and high proportion inhalational inductions

SMART Aim

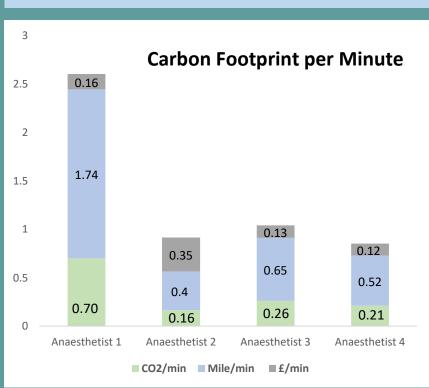
- Ensure desflurane and N20 use for maintenance of anaesthesia in < 5% cases
- Achieve low flow anaesthesia in 95% of cases

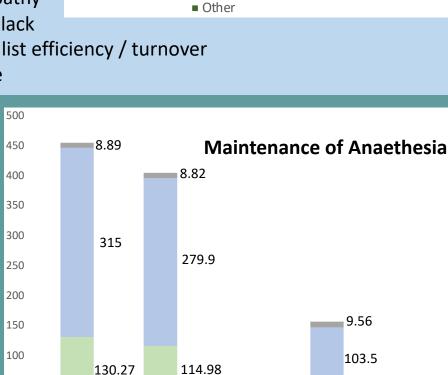
1st PDSA Cycle - pre intervention

- Gassing greener app Individual carbon footprint per theatre
 - •15 cases; 4 theatres
 - •13% IV induction (n=2)
 - •87% gas induction (n=13)
 - Maintenance

Induction

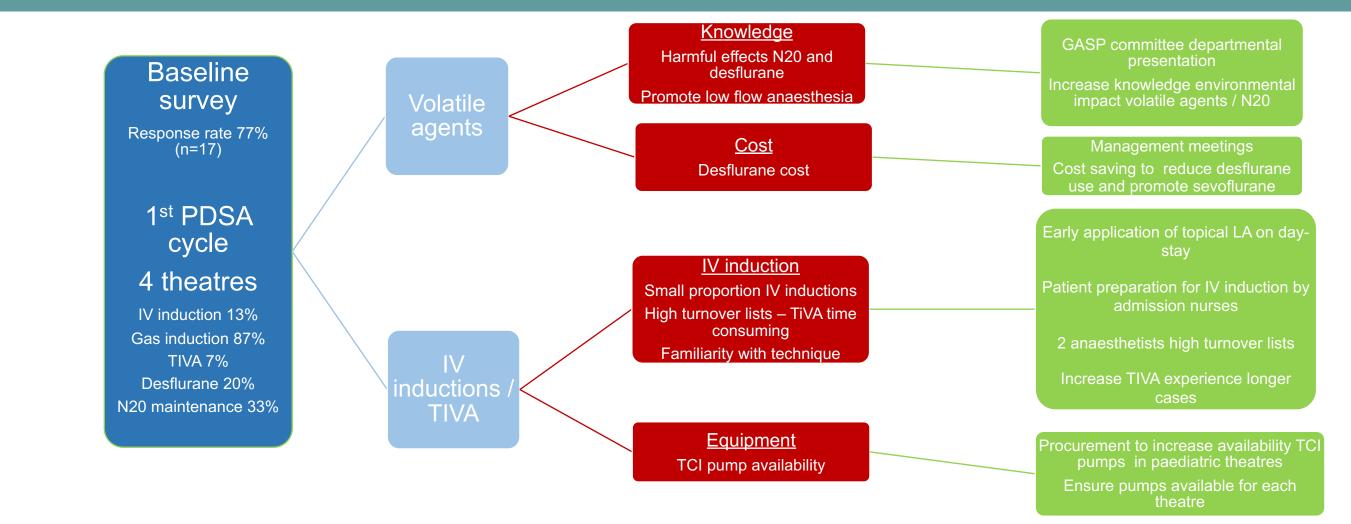
- •93% volatile (n=14)
- •20% desflurane (n=3); 33% N20 (n=5)
- •7% TIVA; (n=1)


Method


- Tertiary paediatric anasthetic department
- Baseline survey anaesthetic practice.
- Response rate 77% (n=17)
 - 36% use desflurane for maintenance (18% daily)
 - List efficiency / faster wake-up
 - 42% use N20 for maintenance (24% weekly)
 - TIVA frequency
 - 47% weekly / 35% monthly
 - Main reason: previous PONV / myopathy
 - Barriers lack of equipment driving lack

of familiarity. Theatre managers driving list efficiency / turnover

50


Baseline PDSA cycle /Identify drivers for change

Des N2O/ O2mix Des O2/air mix Sevo O2/air mix Sevo N2O/o2 mix

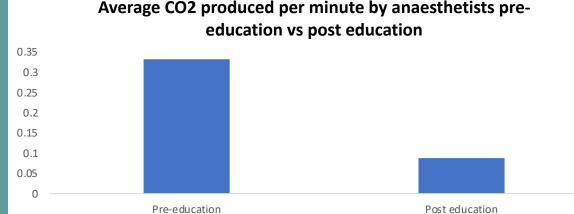
■ CO2 (Kg) ■ Distance Eqiv (Miles) ■ Cost (£)

2nd PDSA cycle – post intervention

58 cases; 4 theatres

- Induction
 - 29% IV induction (n=17)
 - 71% Inhalational (n=41)
- Maintenance
 - 1.7% Desflurane (n=1)
 - 5.2% N20 maintenance (n=3)
 - 3.4% TIVA (n=2)
 - Remainder sevoflurane / air
- Flow <1 L/minute in 100% cases

3rd PDSA cycle - post intervention (post covid)


25 cases; 4 theatres

- Induction
 - 44% IV induction (n=11)
 - 56% inhalational (n=14)
- Maintenance
 - 0% Desflurane (n=0)
 - 4% N20 maintenance (n=1)
 - 12% TIVA (n=2)
 - Remainder sevoflurane / air
- Flow < 1L/minute in 100% cases

References

- 1. The Royal College of Anaesthetists. Environment and Sustainability. https://www.rcoa.ac.uk/about-
- college/strategy-vision/environment-sustainability. Last accessed 27th January 2020. 2. Charlesworth M and Swinton F. Anaesthetic gases, climate change, and sustainable practice. The Lancet. 2017; 1
- (6): 216 217.
- 3. Goh N, Bagshaw O, Courtman S. A Follow up Survey of Total Intravenous Anaesthesia Usage in Children in the UK and Ireland. 2018: 29 (4). 10.1111/pan.13556

Average CO2 produced per minute by anaesthetists preeducation vs post education

- Ensure changes sustained
 - Education sessions 3-months for rotating trainees Permanent staff involvement ODPs and consultant leads
- Co-existing project by ODPs reduce plastic + increase recycling
- Assess impact of COVID-19
 - Reduce exposure to virus by promoting IV induction
 - Shorter patient lists to allow cleaning / PPE

 - Time to promote TIVA use / reduce desflurane
 - Increase TIVA and IV inductions
 - TCI pumps from clinical engineering to ensure 2 per theatre